

APPROVAL SHEET

Title of Thesis: DistribNet –
A Global Peer-to-Peer Internet File System

Name of Candidate: Kevin Atkinson
Master of Science, 2005

Thesis and Abstract Approved:
Charles Nicholas
Professor
Department of Computer Science
and Electrical Engineering

Date Approved:

Name: Kevin Jay Atkinson.

Permanent Address: 7962 Helmart Drive
Laurel, MD 20723

Degree and date to be conferred: Master of Science, 2005.

Date of Birth: May 4, 1977.

Place of Birth: Media, PA.

Secondary education:
Sandy Spring Friends School, Sandy Spring, MD, June 1996

Collegiate institutions attended:
1996-1998, West Virginia Wesleyan, Buckhannon, WV
1998-2000, University of Maryland, College Park, B.S., May 2000
2000-2005, University of Maryland Baltimore County, M.S., December 2005

Major: Computer Science.

ABSTRACT

Title of Thesis: DistribNet –
A Global Peer-to-Peer Internet File System

Kevin Atkinson, Master of Science, 2005

Thesis directed by: Charles Nicholas
Professor
Department of Computer Science
and Electrical Engineering

Most peer-to-peer networks focus on distributing documents which are currently popu-

lar, and not the long term archival of valuable documents. DistribNet, a global peer-to-peer

Internet file system into which anyone can tap or add content, is different as it focuses on

the long term availability of documents.

DistribNet consists of two essentially independent parts. The first part concentrates on

the routing of keys. The routing strategy used is a unique combination of Pastry’s routing

table and Kademlia’s XOR based metric; it has nearly all the same benefits of Pastry while

maintaining most of the simplicity of Kademlia’s XOR based strategy. The second part

focuses on the actual distribution of content.

DISTRIBNET –
A GLOBAL PEER-TO-PEER INTERNET FILE SYSTEM

by
Kevin Atkinson

kevin@atkinson.dhs.org

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science

2005

c
�

Copyright Kevin Atkinson 2005

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Problems Addressed . 2

1.3 Related Work . 2

1.3.1 Other File Sharing Systems . 2

1.3.2 Other Distributed Hash Tables . 4

1.4 Organization . 4

2 DistribNet Overview 5

2.1 Architecture . 5

2.2 Adding Data . 6

2.3 Retrieving Data . 7

2.4 Limitations . 7

3 DistribNet Routing 8

3.1 Overview . 8

3.2 Routing Table . 13

3.2.1 Comparison to Kademlia . 15

3.3 Routing A Message . 17

3.4 Size of Network . 18

3.5 Table Maintenance Details . 19

ii

3.5.1 Joining The Network . 20

3.5.2 Routine Table Maintenance . 21

3.5.3 Leaving The Network . 24

4 Key Management 25

4.1 Index Keys . 25

4.2 Data Keys . 26

4.2.1 Details . 26

4.2.2 Storage . 28

4.2.3 Retrieval . 29

5 Miscellaneous Issues 31

5.1 Long Term Availabity . 31

5.2 Distance determination . 32

5.3 Cache Consistency . 33

6 Evaluation 35

6.1 Tests on Real PCs . 35

6.2 Evaluating the Size of the Routing Tables. 36

7 Limitations and Future Directions 41

7.1 Map Keys and Mutable Documents . 41

7.2 Freeing Space and Determining Worth . 42

7.3 Anonymity . 43

7.4 Using BitTorrent For Content Distribution 44

8 Conclusion 46

A Routing Table Simulation 48

A.1 Graphs of the Second Run . 48

iii

A.2 Complete Data Set . 51

A.2.1 Routing Table Size Data . 51

A.2.2 Leaf Size Data . 61

A.3 Simulation Code . 72

B Implementation Details 80

B.1 Physical Storage . 80

B.2 Determining the amount of space used . 81

B.3 Language . 82

Bibliography 83

iv

List of Figures

3.1 A tree based geometry as seen by node 1300 10

3.2 DistribNet routing table for the node 1300 14

4.1 Data Key Details . 27

6.1 The effect of the network size on the routing table size 39

6.2 The effect of the network size on the leaf set size 40

A.1 The effect of the network size on the routing table size, using data from the

second run . 49

A.2 The effect of the network size on the leaf set size, using data from the

second run . 50

v

Chapter 1

Introduction

1.1 Overview

The primary goal of developing DistribNet was to prove that it is possible to develop a

system which anyone can tap into or add content to, and that focuses on the long term

availability of documents.

In order to build a system which addresses these I had to implement some sort of Dis-

tributed Hash Table (DHT). This in itself turned out to be a rather interesting problem, and

is the area where I spent most of the time.

The primary goal is realized to some extent. However, the current system lacks several

key features, most notable the ability to remove documents when space runs out.

The main contribution to this paper is in the combining of Pastry’s [18] routing table

and Kademlia’s [12, 13] XOR based metric. This gives the system nearly all the same

benefits of Pastry while maintaining most of the simplicity of the Kademlia XOR based

strategy.

1

2

1.2 Problems Addressed

This theses addresses the problem of developing a system which anyone can tap into or add

content to. Once a document is added to DistribNet it should remain available until it is no

longer needed now, or in the future. The ability to publish content should not depend on

the ability of finding someone to host it. The user simply submits the document into the

system and is available for anyone to retrieve. Since a dedicated host is not required the

identity of the poster need not be revealed.

In order to realize this it is necessary to implement some sort of Distributed Hash Table

(DHT) in order to be able to find content without requiring a dedicated host. This thesis

also addresses the problem of developing an efficient DHT. A efficient DHT should be

scalable, self-organizing, and maintain good locality proprieties. It should be scalable in

the sense that the worst case performance should be logarithmic to the number of nodes

on the network. It should be self organizing in the sense that it automatically adopts to the

arrival, departure and failure of nodes. Finally it should maintain good locality proprieties

in that when routing a message it should chose nodes which are close network wise.

1.3 Related Work

1.3.1 Other File Sharing Systems

Over the last several years many types of file sharing systems have developed. The most

popular ones can be grouped into three categories:

P2P File Sharing Those that focuses on allowing users to easily share files. These net-

works index content but don’t actually store the data on the network. Instead they

3

simply point to the location which it can be found, which is generally on the users’

hard drive. Examples of these type of networks include the original Napster, Gnutella

and the FastTrack network (used by Kazaa and others) [14, 7, 4].

Anonymous File Sharing Those that focus on anonymity. These networks distribute the

actual content on the network, in a manner which the end-user has little control over.

These networks include a number of safeguards in order to ensure that the user’s

identity is kept secret. Such networks include Freenet and GNUNet [1, 6].

Distributed Downloading Those that focus only on efficiently distributing a specific doc-

ument. The location of the document must be provided via out-of-band means. The

primary example of this is BitTorrent [2].

However, none of these focus on the long term availability of documents. P2P File

Sharing systems only index documents, which means that files are only available as long

as someone is willing to share it. Absolutely no guarantee is made of the availability of a

documents over time. The very design of most Anonymous File Sharing systems means that

unpopular documents will fall off the system. Finally, Distributed Downloading systems

only focus on saving bandwidth; the complete document in such a system still must be made

available by some on as with a normal P2P File Sharing Systems. DistribNet’s design is

different from all these systems since it is designed to hold onto documents indefinitely

while at the same time allowing anyone to add content to the system.

Although not really considered a file sharing network per-se the web can also be used

to distribute content. However, anyone who wishes to contribute content to the web must

find a means to host it, which in general costs money. One of the goals of DistribNet is to

allow anyone to add content without having to host it.

4

1.3.2 Other Distributed Hash Tables

Just as there are many different file sharing networks, there are also a large number of

DHTs.

One of the most well known DHT is Chord [19, 20]. Another significance one is Pastry

which DistribNet’s DHT is based partly one. A lesser known DHT, which is similar to

Pastry in many ways, is Kademlia [12, 13] which DistribNet is also based on. A detailed

analysis of how DistribNet related these DHTs is given in Chapter 3.

Other DHTs include: PRR [15], Tapestry [21], CAN [17, 16], Viceroy [11], and a

randomized algorithm due to Kleinberg [10].

1.4 Organization

The rest of this document is organized as follows:

Chapter 2 gives a general overview of DistribNet and a coarse description of how Dis-

tribNet performs the basic functions. The DistribNet routing strategy is then laid out in

detail. Chapter 4 discusses the management of keys in DistribNet. Miscellaneous issues

not discussed elsewhere, including how DistribNet’s design focuses on the long term avail-

ability of documents, are then brought up in Chapter 5. The next chapter addresses the

issue of evaluation of DistribNet. Chapter 7 then goes on to discussion limitations of the

current system and possible ways to improve DistribNet in the future. Finally a conclusion

is given in Chapter 8.

Chapter 2

DistribNet Overview

DistribNet consists of two essentially independent parts. The first part concentrates on the

indexing and routing of keys. The routing strategy used is a unique combination of Pastry’s

routing table [18] and Kademlia’s XOR based metric [12]; it has nearly all the same benefits

of Pastry while maintaining most of the simplicity of the Kademlia XOR based strategy.

This is the most well developed and tested part of DistribNet and where this paper will

spend the most time on. The second, less developed part, focuses on the actual distribution

of the content itself.

2.1 Architecture

DistribNet separates the indexing of documents and the actual retrieval of documents. This

is different from anonymous file sharing networks, such as Freenet, which route the actual

contents. However, this is similar to what most P2P file sharing networks do, such as Nap-

ster [14], Gnutella [7] and FastTrack [4]. However, unlike these P2P examples, DistribNet

also stores the actual content on the network.

5

6

The first part of DistribNet involves the storing of routed keys. The second part involves

the storage of non-routed or data keys.

Routed keys are distributed based on a distributed hashing algorithm so that the keys

can always be found. Routed keys are small (under 1k) and will generally, but not always,

point to the location of larger data. Non-routed keys can be distributed in any fashion.

They will typically be stored where it will be the most beneficial in terms of performance

and availability. Routed keys are generally used to point to other data. They are stored as

appendable lists so that they can be updated. Routed keys that are used to locate data keys

are indexed based on the hash of the data key they point to. The primary type of routed key

in DistribNet is the Index key, which is described in more detail in Chapter 4.1.

Non-routed, or data, keys are immutable and always indexed based on the SHA-1 hash

of the content. Depending on the location of the data it can either be considered a Per-

manent key or a Cached key. Cached keys are freely deleted when space is needed while

permanent keys are only deleted if the data is also available somewhere else on the net-

work. A cached key can become a permanent key if necessary to ensure that data does not

disappear from the network. See Chapter 4.2 for more details on the data key.

Nodes in DistribNet are uniquely identified by the 160-bit SHA-1 hash of the public

key. Since SHA-1 hashes are used the nodes will be evenly distributed.

2.2 Adding Data

The actual process of uploading data to DistribNet is fairly involved, but here is a simplified

version of it. The SHA-1 hash of the content is computed. Then several nodes are chosen

as candidates to receive the data. The data is then uploaded to those nodes. If one of the

nodes refuses to accept the data another node is chosen. The final location of the data item

7

is then stored in a routed key which is then uploaded. A more detailed explanation of how

data is stored in DistribNet can be found in Chapter 4.2.1.

2.3 Retrieving Data

The actual process of retrieving data from DistribNet is again fairly involved, but here is a

simplified version of it. In order to retrieve data the SHA-1 hash of the data’s content must

be known. The location of the data is located by retrieving a routed key which is based on

the data’s hash. This key will contain a list of nodes that might have the data. The closest

node is chosen from that list. The data is then downloaded from that node. If that node

does not have the data the next node on the list is tried. If none of the nodes on the list

have the data the request will fail. A more detailed explanation of how data is retrieved in

DistribNet can be found in Chapter 4.2.3.

2.4 Limitations

There is currently no way to retrieve a document by name, only by the hash of the content.

A future version of DistribNet will address this issue by adding a new type of key, the map

key, which will be indexed based on the hash of the title and can be updated. (see Chapter

7.1).

Furthermore, the current version of DistribNet does not provide any mechanism for

removing obsolete data. The network may eventually run out of space. The main reason

for this is due to a lack of some sort of rule to determine when a document is truly obsolete

or useless. (see Chapter 7.2).

Chapter 3

DistribNet Routing

One of the most important aspects of DistribNet is its ability to effectively route keys. The

DistribNet routing protocol has nearly all the same benefits of Pastry while maintaining

most of the simplicity of the Kademlia XOR based strategy. In particular it is completely

decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure

and failure of nodes. Like Pastry, DistribNet also has takes into account network locality

to minimize the distance messages travel [18]. However, due to the use of a strictly XOR

based metric as used in Kademlia, DistribNet routing, is simpler, as a single routing algo-

rithm is used from start to finish [12, 13].

3.1 Overview

DistribNet uses a distributed hash table (DHT) in order to locate keys. Unlike a regular hash

table which computes a hash and then uses direct lookup to locate the key, a DHT computes

the hash and then uses it to find the node closest to the key based on some metric. The node

receiving the key will then again look for the node closest to the key. This process, known

8

9

as routing, will continue until either the key or the closest node is found. This process

works because each node keeps track of different neighboring nodes. The number of other

nodes any particular node keeps track of is only a small fraction of the total number of

nodes on the network. Many different routing algorithms have been developed in recent

years. Most of these algorithms can find the desired key in logarithmic time, however they

differ greatly in the flexibility in choosing neighbors. This flexibility plays an important

role in how well the algorithms perform when nodes go offline and how well it can adapt to

underlying Internet topology. The underlying geometry of the network plays a key role in

the flexibility the DHT algorithm. Only the ones which offer good flexibility are mentioned

here. For others please see the paper “The impact of SHT Routing Geometry on Resilience

and Proximity.”[8].

One well known routing algorithm is Chord [19, 20]. In Chord nodes are arranged in

a ring like structure. The distance between two nodes A and B is the clockwise numerical

distance between A and B on the circle. Mathematically this is essentially:

d � a � b ��� a � b � mod N �
where a and b are the keys for node A and B respectively and N is the size of the network. In

order to route a key to to the closest node, Chord maintains a finger table where the ithentry

in the table is the node closest to a � 2i on the circle. Thus, a node can route a key in logN

hops since each hop cuts the distance in half. Although the original Chord algorithm uses

a specific set of neighbors in the finger table, this rigid selection of neighbors is in no way

fundamental to the ring geometry. Thus the Chord algorithm can fairly easily be modified

to support support flexible node selection. The main drawback of Chord is that, while it

may be easy to describe, it is tricky to implement. In particular the maintenance of the

finger table is tricky.

10

1

02 0300 01

100 101 102 103

1310 1311 13131312

121110

130213011300 1304

130 131 132 134

30 31 32 3320 21 22 23

110 111 112 113 120 121 122 123

1320 1321 1322 1323 1330 1331 1332 1333

13

0 32

Figure 3.1: A tree based geometry as seen by node 1300 with digits of base 4. The large
entries are the part of the network that node 1300 needs to keep track of. The smaller,
shaded, entries are the other nodes in the network.

Another way to implement a DHT routing algorithm is to base it on a tree based ge-

ometry. In a tree based geometry nodes are distributed evenly throughout the tree based

on their keys to form a essentially balanced tree. To do this each key is thought of as a

serious of digits and branching takes place based on these digits as shown in Figure 3.1.

The “distance” between two nodes is the height of the smallest common subtree. The trick

is to store the right part of the tree in each node so that each hop will decrease the distance

by at least one. The maximum number of hops is then the height of the tree. A strategy to

maintain the right part of the tree, known as the routing table, will be discussed in the next

section. Describing a routing algorithm may be tricky, but the structure of the routing table

leads to easy maintenance. The tree geometry can have very flexible node selection if the

routing table keeps track of multiple nodes for each possible branch.

Pastry [18], another popular routing algorithm, uses a tree based geometry but switches

to using numerical distance for the last couple of hops which can be described mathemati-

11

cally as:

d � x � y ���
	 x � y 	
This is necessary because it is not possible to uniquely find the closest node based solely on

the tree based method. For example the keys 1234, 1252, and 1278 are all the same distance

from each other since they all have the same common subtree. However, numerically

they are at different distances from each other. Strictly speaking it possible to have two

nodes, say 1232 and 1238 be the same distance from a key, say 1235, but in practice this is

extremely unlikely to happen because the number of possible keys is generally much larger

than the number of actual nodes on the network.

Another routing algorithm, Kademlia [12], avoids having to use two different metrics

by using a novel routing metric – the bitwise exclusive or (XOR) – which can be described

mathematically as:

d � x � y ��� x � y

For example the keys 0xF0 and 0x1F will have a distance of 0xDF . The XOR metric metric

forms a valid metric space. To see that, note that it satisfies the basic axioms of a metric

space: �
x � y
 0 : d � x � x ��� 0

d � x � y ��
 0

d � x � y ��� 0 �� x � y

d � x � y ��� d � y � x �
as well as the triangle inequality:�

x � y � z
 0 : x � y
 x � y� d � x � y ��� d � y � z ��
 d � x � y ��� d � y � z ��� d � x � z �� d � x � y ��� d � y � z ��
 d � x � z �

12

A metric space is an abstraction of the common notion of distance. Forming a valid

metric space is significant since many of the concepts used for numerical distance in Eu-

clidean space, the most well known metric space, can also be used with other metric spaces

such as the XOR metric.

The XOR metric also directly relates to the metric used in the tree based routing algo-

rithm, when the base B of the digits is a power of 2, via the formula:

�
logB � x � y ���

Furthermore, this metric can also be used to uniquely locate a closest node since, like the

ring metric used in Chord, it is unidirectional, that is, for any given point x and positive

distance δ there is exactly one point y such that d � y � x ��� δ. As already noted above the

simple numerical distance does not have this property as for every point y on the number

line there are exactly two points that have the distance δ in particular y � δ and y � δ.

The unidirectional property also ensures that all lookups for the same key converge

along the same path, regardless of the originating node. This property is useful since it

makes caching of commonly accessed keys as easy as replicating them along this common

lookup path.

The routing algorithm that DistribNet uses combines pieces of both Pastry and Kadem-

lia. The routing table closely resembles that of Pastry, but, DistribNet uses a strict XOR

metric much like Kademlia does. Using a strict XOR metric simplifies the routing and

also avoids some of the problems Pastry has. One of these problems is that nodes close by

the first metric, the tree based one, can be quite far by the second, the numeric one. For

example 0x0FFF and 0x1000 which are very far away by the first one, as they have only

one common subtree, are very close by the second one. This creates discontinuities for par-

ticular node keys, reduces performance, and makes formal reasoning about the worst-case

13

behavior difficult, as observed by Maymounkov and Mazières [12]. In the end the Distrib-

Net routing table ends up being very similar to what Kademlia uses but with one important

difference which will be discussed in Chapter 3.2.1.‘

3.2 Routing Table

In order to to be able to locate keys in a DHT some sort of routing table needs to be

maintained. DistribNet routing table is very similar to Pastry’s. In Pastry keys are seen as

a sequence of digits with base 2b. The routing table is essentially a matrix with at most k
b

rows, where k is the number of bits in the key, and 2b columns as shown in Figure 3.2. Each

row maintains a list of other nodes such that the keys of those nodes have the property that

the first N digits are the same as the current node’s key, where N is the row number which

starts with 0. The node’s within a row are grouped into columns such that the N � 1 digit

of the nodes key is the same as the column number, which also starts with 0. Within each

row one column is empty. The empty column is the column in which the N � 1 digit is the

same as the current node. All the entries in the next row technically fit in this column.

In DistribNet the base chosen is 24 � 16 and the number of rows is fixed at 8. Four was

chosen as the base size for several reasons 1) it is a power of two, 2) when keys are thought

of as a sequence of digits a base size of 4 means that the digits will be hexadecimal, 3)

the Pastry paper hinted that 4 would be a good choice. The number of rows was chosen to

be large enough so that there is no possibility that the last row will be used when dealing

with a moderate size network during testing. Theoretically, the number of rows does not

need to be fixed and it can change based on the network size. It was fixed in the initial

implementation for simplicity.

Unlike Pastry there is no real leaf set. Instead the “leaf set” consists of all rows which

14

Full Row0x 2x 3x

Full Row

Leaf Row

Leaf Row1302

132x 133x

10x 11x 12x

Figure 3.2: DistribNet routing table for the node 1300, with b � 2. All numbers are in base
4, x represents an arbitrary suffix.

are not “full”. A full row is a row which contains 15 full entries with the extra empty entry

being the one which represents the common digit with the node’s key, and thus will never

be used. Not having a true “leaf set” simplifies the implementation since a separate list does

not need to be maintained and the routing algorithm remains the same instead of switching

to numerical distance as Pastry does. This also means that all the nodes in the leaf set will

maintain the same set.

A row is considered full in DistribNet if 15 of the 16 entries are full in the current

node and other nodes on that row also have 15 of the 16 entries full. For each full row

DistribNet will try to maintain at least two nodes for each entry. This way if one node goes

down the other one can be used without affecting performance. When a node is determined

to be down, as opposed to being momentarily offline, DistribNet will try to replace it with

another node that is up. With this arrangement it is extremely likely that at least one of

the two nodes will be available. A full row can become a leaf row if the entry count drops

below 15.

For each incomplete row DistribNet will attempt to maintain as many nodes as are

15

available for that entry so that every other node in the leaf set is accounted for. From time

to time DistribNet will contact another node in the leaf set and synchronize its leaf set with

it. This is possible because all nodes in the leaf set will have the same set. Down nodes

in the leaf set will be removed, but the criteria for when a node is down for a leaf set is

stricter than the criteria for a full row. If a leaf row becomes full then excess nodes will be

removed.

Unfortunately on a dynamic network where nodes are constantly coming and leaving

the current strategy of distinguishing between a full and leaf row can lead to an oscillation

between the two states. If this happens network bandwidth will be wasted as DistribNet

will constantly be adding and removing nodes from the routing table. However, the rate

which this happens should be low enough that it does not waste a significant amount of

bandwidth.

3.2.1 Comparison to Kademlia

The routing table DistribNet uses is based on Pastry. However, it also turns out to be very

similar to Kademlia’s with one key difference.

Kademlia routing table is described in [13] (Chapter 2.4) as follows (u simply referrers

to the current node):

The routing table is a binary tree whose leaves are k-buckets. Each k-

bucket contains nodes with some common prefex of their IDs. The prefix is

the k-bucket s position in the binary tree. Thus, each k-bucket covers some

range of the ID space, and together the k-buckets cover the entire 160-bit ID

space with no overlap.

Nodes in the routing tree are allocated dynamically, as needed . . . Initially,

16

a node u’s routing tree has a single node—one k-bucket covering the entire

ID space. When u learns of a new contact, it attempts to insert the contact in

the appropriate k-bucket. If that bucket is not full, the new contact is simply

inserted. Otherwise, if the k-bucket’s range includes u’s own node ID, then the

bucket is split into two new buckets, the old contents divided between the two,

and the insertion attempt repeated. If a k-bucket with a different range is full,

the new contact is simply dropped.

Kademlia’s k-bucket is very similar to a row in DistribNet’s table. However, a Distrib-

Net row doesn’t need to be split as a k-bucket does in Kademlia. The place where Kademlia

will split a k-bucket corresponds to the empty column in DistribNet. Thus, in a way, a Dis-

tribNet row is split when the table is created rather than dynamically, as needed. Since the

table won’t get very large this is not an issue in practice.

So, even though DistribNet and Kademlia’s routing table are implemented differently

they end up being functionally very similar. However there is one key difference. This

difference comes from the fact that Kademlia has no concept of full or leaf rows. DistribNet

tries very hard to make sure it knows about every other node on the network that has the

same first n digits as its own node key where n is defined as the depth of the first leaf row

while Kademlia makes no such effort.

Keeping track of every node in the leaf set allows DistribNet to get a very accurate

estimate on the size of the network. If the network is static (i.e. nodes are not joining and

leaving the network) the estimate will be exact. Otherwise it should be very close. Such an

estimate is only possible if, after a certain point, every node on the network with the same

prefix is accounted for. Thus such as estimate isn’t possible with Kademlia. See Chapter

3.4 for the details on how the network size is estimated.

However, as previously mentioned, the current manner by which DistribNet distin-

17

guishes between a full and leaf row can lead to a constant adding and removing of nodes

from the table. Kademlia does not have this problem, since it is specific to maintaining a

leaf set.

3.3 Routing A Message

Routing in DistribNet is very simple. Whenever a route request is sent, DistribNet looks for

the closest node to the key by using the XOR metric and then forwards the request to that

node. This is done recursively until the current node is the closest node on the network, in

which case the search terminates. Since the XOR metric is unidirectional there will always

be exactly one node in the routing table that is the closest, it is never the case that two nodes

will be the same distance from a key. Furthermore, the process is guaranteed to terminate

since each routing step involves finding a closer node and will stop if a closer node cannot

be found.

Under ideal conditions each step matches another upper order digit, or when viewed as

a tree decreases the heigt of the common subtree by at least one. Therefore, under ideal

conditions the number of routing steps is:

�
log16 N �

The expected number of routing steps is very close to ideal since DistribNet tries very hard

to maintain ideal conditions. The absolute worst case performance is N since each routing

step involves finding a node that is at least a little close than the current node. However, the

chances of the network degrading to the worst case is next to nothing.

18

3.4 Size of Network

One very nice property of using a tree based geometry is that is possible to theoretically

calculate the exact size of the netwoek via the formula:

S � k ���
���� ��� l � k � if l � k � exists

B 1

∑
i ! 0

S � k : i � otherwise

where k is a string of digits of base B (16 in the case of DistribNet), k : i is the string k with

the digit i appended to the end. l � k � is said to exist when all node keys starting with k have

the same leaf set, in which case l � k � is the size of this leaf set. The size of the network is

then S � ε � where ε represents the empty string.

Of course, on a live network, where nodes are constantly coming and going, the exact

size can not be calculated. However, we can get very close. In addition it is possible to get

an idea of how accurate this estimate is.

Each node on the network maintains an estimate of S for the empty string, for the first

digit of its node key, for the first two digits, and so on. Let Si � k � be equal to S � k � for the

first i digits of k. Let Sirepresent Si � K � where K is the current node’s key. Let Ni " jbe the set

of nodes in row i and column j of the current node’s routing table. Finally let Ji be the set

of integers between 0 and B � 1 except the one which is equal to the i � 1 digit of K. Then:

S � S0

Si �
���� ��� ∑

j # Ji

Si " j � Si $ 1 full row

Li leaf row

Si " j � avg
n # Ni % j � Si $ 1 � n �&�

for each full row. Li is the number of nodes in a leaf row which is known since DistribNet

19

keeps track of every node on the network that is in the leaf set.

Each node on the network also maintains an estimate of the accuracy of S which is a

number between 0 and 1.0. The accuracy A is calculated as follows:

A � A0

Ai �
������ �����

∑
j # Ji

Ai " j � Ai $ 1

B
full row

A i � 2 �(''' S)i Si

S)i $ Si
'''3

leaf row

Ai " j � avg
n # Ni % j � Ai $ 1 � n �&� avg

n # Ni % j � Si $ 1 � n ���
max
n # Ni % j � Si $ 1 � n ���

where S and A represent the value of S and A from the previous iteration with an initial

value of 0. The value of A does not have an exact meaning except that higher values

represent a more accurate estimate. The maximum value of A, 1.0, can never be reached,

but on a stable network the value of A can become very close to 1.0.

The relevant values of Si � n � and Ai � n � for nodes other than the current node is stored

with the node in the routing table and is updated from time to time.

Being able to get a precise estimate of the network size is useful in itself. However, this

information is also used by the DistribNet algorithm to distinguish between a Full row and

a Leaf row, which is a key part of DistribNet routing.

3.5 Table Maintenance Details

There are four messages related to table maintenance: ROUTING-INFO-REQ, ROUTING-

INFO, ROUTING-COUNT-REQ, and ROUTING-COUNT.

20

A ROUTING-INFO-REQ is sent in order to retrieve another node’s routing table. A

ROUTING-INFO-REQ contains one parameter which is a node key. The message is routed

until the closest node to the key is found, excluding the key itself. This message is most

commonly sent when a node first joins the network. The request is sent in order to discover

the node which is closest to itself (via the XOR metric). The response to the message is a

ROUTING-INFO message which simply contains a list of all nodes in the routing table. The

ROUTING-INFO message is also sent by itself from time to time to make sure all the nodes

in the leaf-set know about each other.

A ROUTING-COUNT-REQ has two purposes, to make sure a node is still alive, and

to maintain an accurate estimate on the number of nodes on the network. Unlike the

ROUTING-INFO-REQ message it is sent to a specific node and is not routed. The response

to this message is a ROUTING-COUNT message. A ROUTING-COUNT message contains the

node’s values of Si, Ai and Ci where i goes from 0 to the number of rows in the routing table

(currently eight). Si and Ai are as described in Chapter 3.4 and Ci is a count of the number

of columns in each row that have at least one node in them. DistribNet uses this count to

determine if a row is a full.

3.5.1 Joining The Network

In order to join the network the node must have at least one other node in the routing table.

The procedure for joining the network for the first time is the same as the procedure for

rejoining the network after being disconnected for a while.

When the node first joins a network it will send a ROUTING-INFO-REQ message and

then update its routing table with the information returned which is the routing table of the

closest node on the network. Next the node will perform table maintenance for the first

time. Finally, the node will send a ROUTING-INFO message to every other node in its leaf

21

set to announce its presence.

3.5.2 Routine Table Maintenance

When a node first joins a network, and then at fixed intervals T table maintenance will be

performed in order to to keep the routing table current.

Updating Route Count Information

The first step performed in table maintenance is to update the count information for selected

nodes in the routing table. This is done using the following process.

1. Flag all nodes that have not been updated in TR time which is a number generally

several times larger than T .

2. Of the flagged nodes randomly select at most P �+* R T
TR , , where P is the carryover

value from the previous iteration and R is the number of nodes in the routing table, to

be updated. This is done so that during each maintenance interval roughly the same

number of nodes will be updated.

3. Reset the carryover value P to 0.

4. Send a ROUTING-COUNT-REQ to each of the selected nodes and wait for them to re-

spond with a ROUTING-COUNT message. If a node does not respond then increment

the carryover value P. If the node is online then the relevant values of Si, Ai and Ci

for that node are updated.

During the first maintaince interval, i.e. when a node first joins the network, all of

the nodes in its table will be flagged in step 1. Assuming ideal conditions, that is TR is a

22

multiple of T and R is a multiple of TR, step 2 will then select R T
TR

nodes to update. During

the next interval, step 1 will flag R � R T
TR

nodes, of which another R T
TR

will be selected.

During the ith interval, step one will flag R � iR T
TR

nodes until the 2TR
T interval. From that

point on, exactly R T
TR

nodes will be flagged in each interval. Furthermore, each i TR
T � n

interval, for all i with n -/. 0 � TR
T 0 , will flag the exact same nodes. This of course assumes

that every node is online and that there are not any new nodes joining the network.

If a node does not respond in step 4 then that node will be flagged again during the next

interval in step 1. Thus there is a chance it will be selected again during step 2. If it doesn’t

get selected during this interval then there is a chance it will get selected in the next one,

and so on, until it is finally selected, which will be within TR
T maintenance intervals because

of the use of the carryover value P. If the node went offline after the network had been up a

while (i.e. after TR
T maintenance intervals) then there is a high probability it will be selected

again in the next maintenance interval. If this is the only node that went off line and no

new nodes are added then the probability of it being selected in the next interval is 100%.

On a live network with nodes coming and going this system should ensure that for every

maintenance interval roughly the same number of nodes will be contacted and that every

node will be contacted at least once for every TR
T maintenance intervals.

Updating The Network Size

The estimate of the network size is then updated which includes calculation values for Si

and Ai as described in Chapter 3.4.

23

Determining If A Row Is Full

Then each row is reexamined to determine if it is a full row or a leaf row. A row i is

considered full only when Ci � Cmax and ∑ fi � n �1
 3 for all nodes n on the row where

fi � n �2�
��������� ��������

1 if Ci � n �3� Cmax

0 if Ci � n � 4� Cmax and Ai $ 1 � n �65 0 7 85� 1 if Ci � n �3� Cmax � 1 and Ai $ 1 � n �6
 0 7 85� ∞ if Ci � n �85 Cmax � 1 and Ai $ 1 � n �6
 0 7 85

and Cmax is the maximum value Ci can have which is equal to one less than the number of

columns in the table. The value of Ai $ 1 is used instead of Ai because that is the value that

is stored with the node. If Ai $ 1 5 0 7 85 then the row count (Ci) from that node should not

be trusted as it probably has not been on the network that long.

Synchronizing Leaf Sets

The next step is to synchronize its leaf set with other leaf nodes to ensure that it knows

about every possible node on the network that should be in its leaf set.

Repairing

When there are less than two nodes for a column in a full row DistribNet will attempt to

locate another node for that position.

24

3.5.3 Leaving The Network

No special action is taken to leave a network. A node simply disconnects. Other nodes will

eventually discover that the node went offline and take appropriate action.

Chapter 4

Key Management

The previous chapter discussed how DistribNet routes a message in order to be able to

find the node with the information, or key, of interest, however it did not discuss how the

actual keys are managed. This chapter will address the issue. Also addressed will be how

DistribNet manages content, that is the data to which the keys point.

There are two primary key types in DistribNet: Index and Data Keys. Index keys

in DistribNet are routed keys which point to other data, which is generally a Data Key.

Data Keys on the other hand are non-routed keys which point to where the content can be

downloaded from.

4.1 Index Keys

Index keys in DistribNet are routed keys which point to other data, in particular Data Keys.

They are essentially appendable lists. They are designed so that, with a little modification,

they can also be used as generic appendable lists.

25

26

Each index key contains a list of nodes on the network which should contain the cor-

responding data key. At any given time at least X index keys are stored on the closest X

nodes via the XOR metric. Index keys stored this way are known as permanent index keys.

Since the size of index keys is small they will generally be highly replicated. However,

the replicas will not be identical as maintaining a complete list of all the nodes which

contain a popular key in every replicate is simply not practical. Instead each replica only

contains a list of a few close by nodes (via some metric, see 5.2) which currently have

the data key in their cache and the list of nodes which have the data key in the permanent

storage.

Index keys are cached along the path of retrieval. Because the XOR metric is unidirec-

tional lookups for the same key converge along the same path. Thus a cached index key is

likely to be seen by future lookups for the same key by other nodes before the permanent

index key is found, thus reducing the number of hops required to locate the key. The more

popular a key is, the higher the degree of replication and thus the soon it will be found. [12]

4.2 Data Keys

Data keys is DistribNet are keys which are indexed based on their content and hold an

arbitrary amount of non-mutable data. Since they are large (up to around 32K) they will

generally not be routed.

4.2.1 Details

Data keys will be stored in maximum size blocks of just under 32K. If an object is larger

than 32K it will be broken down into smaller size chunks and an index block, also with a

27

Data Block Size: 215 � 128 � 32640
Index block header size: 40
Maximum number of keys per index block: 1630
Key Size: 20

Maximum object sizes:

direct 9 214 : 99 about 31.9 kilo
1 level 9 225 : 66 about 50.7 megs
2 levels 9 236 : 34 about 80.8 gigs
3 levels 9 247 : 01 about 129 tera
4 levels 9 257 : 68

5 levels 9 268 : 35

Figure 4.1: Data Key Details

maximum size of about 32K, will be created so that the final object can be reassembled.

If an object is too big to be indexed by one index block the index blocks themselves will

be split up. This can be done as many times as necessary therefore providing the ability to

store files of arbitrary size. DistribNet will use 64 bit integers to store the file size therefore

supporting file sizes up to 264 � 1 bytes.

Data keys will be retrieved by blocks rather then all at once. When a client first requests

a data key that is too large to fit in a block an index block will be returned. It is then up the

client to figure out how to retrieve the individual blocks.

Please note that even though blocks are retrieved individually they are not treated as

truly independent keys by the nodes. For example a node can be asked which blocks it has

based on a given index block rather then having to ask for each and every data block. Also,

nodes maintain persistent connections so that blocks can be retrieved one after another

without having to re-establish to connection each time.

Data and index blocks will be indexed based on the SHA-1 hash of their contents. The

exact numbers are shown in Figure 4.1.

28

Why 32640?

A block size of just under 32K was chosen because I wanted a size which will allow most

text files to fit in one block, most other files with one level of indexing, and just about

anything anybody would think of transferring on a public network in two levels and 32K

worked out perfectly. 32640 rather then exactly 32K was chosen to allow some additional

information to be transferred with the block without pushing the total size over 32K. 32640

can also be stored nicely in a 16 bit integer without having to worry if it is signed or

unsigned.

However, the exact block size is not fixed in stone. If, at a latter date, a different block

size is deemed to be more appropriate then this number can be changed.

4.2.2 Storage

Permanent data keys will be distributed essentially randomly. However, to ensure avail-

ability the network will try to ensure at least N nodes contain the data. Nodes which are

responsible for maintaining a permanent key will know about all the other nodes on the

network which are also responsible for that key. From time to time it will check up on the

other nodes to make sure they are still live and if less than N � 1 other nodes are live it will

look for another node to maintain a copy of the key. It will first try asking nodes which

already have the key in its cache to maintain a permanent copy of the key. If this fails it

will chose a random node to ask and will keep trying, selecting a different random node

each time, until some node accepts or one the original nodes becomes live again. The exact

value for N and how hard DistribNet tries to ensure a keys availability will be based on its

estimated worth.

Cached data keys will be distributed based on where it will do the most good perfor-

29

mance wise. For the initial implementation cached keys are simply stored on the node that

downloaded them. When space runes short the oldest cached keys will be deleted. Age

is based on the last time a user of the local node accessed the file. Age does not include

accesses from other nodes. The theory here is that if another node accessed a key it will

also store a copy of the key, thus there is no need to cache it.

4.2.3 Retrieval

When a node A wants to retrieve a key K one of two things will happen. If it has good

reason to believe that a nearby node has the key it will attempt to retrieve it from that node,

otherwise it will send a request to find other nodes which have the key.

To do this, node A will contact a node, B, whose key is closer to K than node A’s key.

Node B will in turn contact C etc, until an answer is found which for the sake of argument

will be node E. Node E will then send a list of possible nodes L which contain key K

directly to node A. Node E will then send the result to node D, which will send it to C,

etc. Node E will also add node A to list L with probability of say 10%, Node D will do

the same but with a probability of say 25%, etc. This will avoid the problem having the list

L becomes extremely large for popular data but allow nodes close to A to discover that A

has the data since nodes close to A will likely contact the same nodes that A tried. Since A

requested the location of key K it is assumed that K will will likely download the data. If

this assumption is false then node A will simply be removed from the list latter on.

Once A retrieves the list it will pick a node from the list L based on some evaluation

function, let’s say it picks node X. Node X will then return the key to node A. The eval-

uation function will take several factors into account, including distance, download speed,

past reputation, and if node A even knows anything about the new node.

30

If node X does not send the key back to node A for whatever reason it will remove node

X from the list and try again. It will also send this information to node B so it can consider

removing node X from its list, it will then in turm notify node C of the information, etc. If

the key is an index block it will also send information on what parts of the complete key

node X has. If the key is not an index block than node a is done.

If the key is an index block then node A will start downloading the sub-blocks of key

K that node X has. At the same time, if the key is large or node X does not contain all

the sub-blocks of K, node X will chose another node from the list to contact, and possibly

other nodes depending on the size of the file. It will then download other parts of the file

from the other nodes. Which blocks are downloaded from which nodes will change based

on the download speed of the nodes so that more blocks are downloaded from faster nodes

and less from slower, thus allowing the data to be transferred in the least amount of time.

If after contacting a certain number of nodes there are still parts of the key that are not

available on any of those nodes, node A will perform a separate query for the individual

blocks. However, I imagine, in practice this will rarely be necessary.

Chapter 5

Miscellaneous Issues

This chapter will discussion a few miscellaneous issues important to DistribNet that were

not presented anywhere else.

5.1 Long Term Availabity

DistribNet was designed with the long term availability of documents in mind. One key

design decision made towards this goal was the separation of the indexing and storing

of data. This separation allows special measures to be taken to ensure that documents

are always available, something that is not possible with networks that don’t have this

separation. In these networks data has to be stored where is can be found based on its key,

which is generally some sort of hash of the data itself.

Another key design decision was the use of DHT for the indexing of documents, which

allows for any document that exists on the system to be found in logN time, no mater

how unpopular it is. This is in sharp contract to systems like Freenet [1], in which finding

unpopular documents that exist on the system can take much longer than logN. The small

31

32

size of the index keys, as compared to the data itself, help to ensure that every node will be

able to index all of keys that it is responsible for.

Another key factor to ensuring the long term availability of documents in DistribNet is

the inability for anyone to manually remove documents from the system. Thus, users don’t

have to worry about a document disappearing from the network, no matter how controver-

sial it is.

5.2 Distance determination

In order to minimize network traffic it is important to be able to estimate how far away a

node is on the network so that the closest node can be selected. There are several different

ways network distance can be measured:

1. The number of hops it takes to get from point A to point B.

2. The physical cost to send data from point A to point B. For example the cost of

sending data over a LAN is relatively cheap compared to the cost of sending data

over the Internet.

3. The latency.

4. The amount of bandwidth available.

In order to determine the best node to choose all of these factors should be considered.

However it is often, but not always, sufficient to only consider the number of hops.

One very coarse estimate for node distance would be to use the XOR distance between

two node’s IP address since closer nodes are likely to share the same gateways and nodes

33

really close are likely to be on the same subnet. This is what the current implementation of

DistribNet does.

Another way to estimate node distance relies on the the fact that node distance, for the

most part, obeys the triangle inequality. For each node in the list of candidate nodes some

information about the estimated distance between that node, node E, in the list and the node

storing the list is maintained by some means. For node A to estimate the distance between

a node on the list, node X, and itself all it has to do is combine the distance between it and

E with the distance between E and X. The combination function will depend on the aspect

of distance that is being measured. For the number of hops it will simply add them, for

download speed it will take the maximum, etc.

5.3 Cache Consistency

Maintaining cache consistency is a difficult problem for any network. Some networks, such

as Freenet, avoid the issue all together by not having mutable keys. Other networks only

keep cached copied of data around for a short time span, therefore reducing the chance

of the cache data being out of date. Once a cached copy gets out of date the node either

throws the copy away, or checks to see if a newer copy is available. Either approach creates

unnecessary network traffic. Another approach is to have the server notify other nodes

whenever the data changes. This approach will not scale well as the number of nodes a

server needs to keep track of will grow with the network and is completely impractical

for a large distributed network. A similar, but more scalable, approach is for nodes on the

network to notify each other whenever a key changes. This is the approach that DistribNet

uses.

The other issue that needs to be dealt with is conflicts. That is when two different

34

people modify the same key at nearly the same time. DistribNet avoids this problem by

only allowing keys to be added to. If two nodes add to the same key at the same than the

conflict can be resolved by simply including both additions.

Chapter 6

Evaluation

I have tested DistribNet in two ways. The first is by testing the system on real PCs in a

emulated network environment and the other is by running a simulation to better understand

the size of the routing tables.

6.1 Tests on Real PCs

DistribNet has been tested by running up to around 16 instances on a single machine where

each instance is treated as separate node. Using the Emulab testing framework I have tested

DistribNet on 64 different machines each running 16 instances of DistribNet giving a total

number of nodes of 1024. Emulab is a system in which you get exclusive access to real

PCs for a limited amount of time.

Tests that I have performed include:

1. Making sure that all nodes can find find each other by bootstrapping each node with

two other randomly chosen nodes and starting them all up at the same time. I then

35

36

check each nodes routing table to make sure it has found all of the other nodes it

should have, and that they all have an accurate estimate on the number of nodes on

the network.

2. Stressing the ability of nodes to eventually find each other by only bootstrapping

each node with one other node so that they form a chain. For example in a three node

experiment node C will only know about node B, node B will only know about node

A, and A won’t know about any other nodes when they first start up.

3. Once all the nodes are up, randomly killing off nodes and checking that messages

are still able to be routed properly. I also check that other nodes eventually recognize

that the dead nodes are down and adjust the routing tables accordingly.

4. Post content to the network and make sure that I can retrieve the data from all the

other nodes on the network.

6.2 Evaluating the Size of the Routing Tables.

In order to better understand the size of the routing table I wrote a C++ program which

simulates what the routing tables in DistribNet will look like. Simulations were done for

network sizes up to around 16 million. In particular:

1. The simulation was run three times for network sizes of even powers of 4, from 256

(44) to 16,777,216 (412). Even powers of 4, rather than 2, were chosen in the interest

of time as the simulation can take a very long time to run for large network sizes (a

single simulation for a network size of 16,777,216 takes 48 seconds on an AMD-64

3000+).

37

2. Using a exponential distribution, the simulation was run twice for 256 random net-

work sizes were between 64 and 16,777,216.

For each simulation the routing table was created for 256 random nodes in the network.

The routing table created accurately reflects what the routing table would look like in an

idealized DistribNet network. If there were less then 256 nodes in the network than the

routing table was created for every node in the network. For each node sampled, various

statistics were gathered. The primary ones of interest are the size of the routing table and

the size of the leaf set. Figure 6.1 shows the size of the routing table for each network

size simulated while Figure 6.2 shows the size of the leaf set. For clarity only the first

simulation for each network size was shown. The same graphs, but with the results of the

second simulation, the complete data set, with the statistics for every run, and the source

code for the simulation can be found in Appendix A.

As shown in Figure 6.1 the size of the routing table is roughly logarithmic to the net-

work size, however, there is a large variance in the size of the routing table between nodes.

Furthermore, certain network sizes lead to larger than average routing table sizes. A similar

pattern can be found in the sizes of the leaf set as show in Figure 6.2. The size of the leaf set

does not grow with the network size, however there are certain values where the maximum

leaf set size can get very large. These spikes are around 211, 215, 219, 223. Each of these

numbers are half of even powers of 16: 212, 216, 220, 224. After these spikes, the maximum

leaf set size drops sharply. Another interesting thing to note is that while the variance in the

leaf set size peaks at half of the even powers of 16 the average leaf set size peaks at a fourth

of the even powers of 16: 210, 214, 218, 222, after which the average leaf set size drops while

the maximum leaf set size continues to increase. In fact even when the maximum leaf set

size drops the average leaf set size continues to grow. I am, unfortunately, not exactly sure

as to the cause of these spikes. I am sure, however, that these results accurately reflect what

will happen in the real DistribNet network for several reasons:

38

1. The generated routing tables are identical to what they will be in a stable DistribNet

network with the same nodes.

2. The results are peculiar but not random. For each spike in variance there is a gradual

buildup and then a sharp drop.

3. I ran each simulation at least twice, and the results are approximately the same.

The large variance in the routing table sizes may be cause for concern since each node

in the routing table needs to be maintained by periodically sending packets to the node.

Whether this overhead is significant needs to be studied further.

39

N
et

w
or

k
S

iz
e

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

2^
24

Routing Table Size

05010
0

15
0

20
0

25
0

Figure 6.1: The effect of the network size on the routing table size. The box plots show
the 25/Medium/75% where the lines stretch to the minimum and maximum with (barely
visible) ticks at the 5/95%.

40

N
et

w
or

k
S

iz
e

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

2^
24

Leaf Set Size

02040608010
0

12
0

14
0

Figure 6.2: The effect of the network size on the leaf set size. The box plots show the
25/Medium/75% where the lines stretch to the minimum and maximum with (barely visi-
ble) ticks at the 5/95%.

Chapter 7

Limitations and Future Directions

The current design of DistribNet is very limited. In this chapter I will discuss these limita-

tions and possible ways to solve them.

7.1 Map Keys and Mutable Documents

DistribNet, as currently implemented, is very limited in the type of data it can store. In

particular only non-mutable keys indexed by the hash of their content are supported.

Future versions of DistribNet will support map keys which will be indexed based on

their title and can be updated. Map keys will contain the following information:

; Short Description

; Public Namespace Key

; Timestamped Index pointers

; Timestamped Data pointers

41

42

At any given point in time each map key will only be associated with one index pointer and

one data pointer. Map keys can be updated by appending a new index or data pointer to

the existing list. By default, when a map key is queried only the most recent pointer will

be returned. However, older pointers are still there and may be retrieved by specifying a

specific date. Thus, map keys may be updated, but information is never lost or overwritten.

7.2 Freeing Space and Determining Worth

One important aspect of DistribNet is to determine how valuable a key is and thus how hard

the network should try to keep it available. Worth should not be based on how popular a

file is at the moment but how popular a file is over the long term. Furthermore a file which

is popular over a long period of time should be given more value than a file which is really

popular but only for a short period of time. Worth should be based on a combination of

long term access patterns as well as what users think of the file. Authors should also be

able to influence the worth of a document, for example a draft of a paper should have less

worth than the published paper.

In order to determine worth based on usage patterns access to a file must be logged

in some way. Unfortunately logging every single access of a file from the beginning of

time is not very practical so it needs to be summarized in some manner that will accurately

reflect overall usage patterns. Simply maintaining a count of the number of times a file

is accessed is not sufficient as that will not be able to distinguish files which are popular

over a long period over file which are really popular but only for a short time. It also needs

to be possible to merge the access logs of different nodes or at least combine their worth

rankings in some intelligent manner.

In order to determine worth based on users’ opinion of a file there needs to be a way for

43

users to vote on a file. Furthermore, there needs to be a way to prevent a user from voting

multiple times and thus artificially increasing the worth of a file.

Authors should also have a say on the worth of a file. However, they should only be able

to influence so much. Naturally they should not be able to give a file a high worth value, but

they should also not be able to give it too low of a value. For example an author should not

be able to release a document which becomes very popular and then some time latter deem

it is worthless and thus remove it from the network. In DistribNet I plan to allow a author

to mark a document as deleted, but won’t allow it to be actually purged. Rather, deleting a

document will lower its worth value by a small percentage. If no one was interested in the

file in the first place then this small decrease in worth will likely cause the file to “fall off”

the network fairly quickly. However if lots of people are still accessing a file it will still be

available.

Thus, determining worth of a document is far from simple. Because of this the current

version of DistribNet makes no attempt to determine worth and thus no attempt to remove

worthless documents. This means that eventually the DistribNet network will run out of

space. If this happens the only way to resolve the situation is to manually remove files from

the store. This is obviously a serious limitation and needs to be addressed somehow before

DistribNet can be used as a general purpose file sharing network available to the public.

7.3 Anonymity

Because there is no indirection when retrieving data, most of the data on any particular

node would be data that a local node user requested at some point in time. This means that

it is fairly easy to tell which keys a particular user requested. Although complete anonymity

for the browser is not one of my goals this is going a bit too far. One solution for this is to

44

do something similar to what GNUNet does, which is described in [6].

It is also blatantly obvious which nodes have which keys. Although I do not see this as

a major problem, especially if a solution for the first problem is found, it is something to

consider.

7.4 Using BitTorrent For Content Distribution

The distribution of Data keys in DistribNet is rather simplistic. They are simply stored

where they are used last. However, since the distribution of data keys is independent from

the indexing of these keys a completely different system can be used.

One such system is BitTorrent [2] which was first introduced shortly after DistribNet

was started. In this very short time BitTorrent has become extremely popular due to its

efficient way of distributing large files. BitTorrent’s strategy of distributing files is sim-

ilar to the way Data keys are distributed in DistribNet but more advanced. BitTorrent

works by requiring everyone who is currently downloading a file to also upload the file to

other downloaders. A file is not downloaded in sequential order, instead random pieces are

downloaded. Which pieces depends on which pieces are available by other users trying to

download the same file. Eventually the complete file will be download as each downloader

will have a different part of the file available to share.

To distribute a file on BitTorrent:

1. A .torrent file which bootstraps the process needs to be made available via con-

ventional means (often a web site). Since the this file is generally small, it can easily

be distributed as an index key with DistribNet.

2. A complete copy of the file needs to be made available. In DistribNet’s case, the file

45

can be hosted on the DistribNet network itself as a permanent data key.

3. Finally, a tracker needs to be made available. A tracker is a server that allows down-

loaders to find each other. If the tracker goes down than no one else can download the

file. Thus the tracker in the one non-distributed aspect of BitTorrent. To implement

a tracker in DistribNet a random node can be selected. Because the downloading of

files is distributed the tracker itself will receive very little traffic. Unfortunately, if

the node goes down than the file will be lost. A possible solution to this problem is

to have multiple trackers for a particular file. If one of the tracker’s goes down all

a downloader needs to do is switch to another one. For any one file actively being

downloaded several trackers will be maintained. If a file is not being download than

no trackers will be maintained, however once someone starts downloading the file 2

or 3 random nodes will be selected to serve as trackers.

Since, BitTorrent solves the problem of distributing the network load very well, the use

of the all or part of the BitTorrent protocol, instead of the exiting, rather simplistic, protocol

in use now by DistribNet, is definitely worth investigating.

Chapter 8

Conclusion

In this paper I have presented a distributed file sharing network known as DistribNet. The

goal of designing DistribNet was to prove that it is possible to develop a system which

anyone can tap into or add content to and that focuses on the long term availability of

documents.

In order to build a system which addresses this problem I had to implement some sort

of DHT, which in itself turned out to be a rather interesting problem and is the main con-

tribution of this Thesis. The primary goal of a DHT is to be able to route messages to

the appropriate node. DistribNet unique routing strategy is a combination of Pastry’s rout-

ing table and Kademlia XOR based metric. It is completely decentralized, scalable, and

self-organizing as it automatically adopts to the arrival, departure and failure of nodes like

Pastry does. Yet its routing strategy is simpler than Pastry thanks to the XOR based metric

as found in Kademlia.

The routing table in DistribNet is used to find the location of the content. The actual

storage and retrieval of data is independent of the routing. DistribNet uses a simpler and

less developed system for this part. However, being independent of the routing, a com-

46

47

pletely different strategy can be used instead, such as one similar to what BitTorrent uses.

DistribNet addresses the issue of the long term availability of documents by never re-

moving documents from the system. However, this strategy will not scale well over time.

The issue of when to remove documents from the system, while still maintaining the avail-

ability of ones which may be of use to some one in the future, is a difficult problem which

needs to be studied further.

Appendix A

Routing Table Simulation

This appendix gives the graphs of the second run and the complete data set from all the runs

in the routing table simulation described in Chapter 6.2. The source code to the simulation

is also provided.

A.1 Graphs of the Second Run

48

49

N
et

w
or

k
S

iz
e

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

2^
24

Routing Table Size

05010
0

15
0

20
0

25
0

Figure A.1: The effect of the network size on the routing table size. This plot is identical
to Figure 6.1 except that the data is taken from the second run instead of the first. The
box plots show the 25/Medium/75% where the lines stretch to the minimum and maximum
with (barely visible) ticks at the 5/95%.

50

N
et

w
or

k
S

iz
e

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

2^
24

Leaf Set Size

02040608010
0

12
0

14
0

Figure A.2: The effect of the network size on the leaf set size. This plot is identical to
Figure 6.2 except that the data is taken from the second run instead of the first. The box
plots show the 25/Medium/75% where the lines stretch to the minimum and maximum with
(barely visible) ticks at the 5/95%.

51

A.2 Complete Data Set

The columns of both charts are as follows:

; Average; Standard Deviation

; Mean; Difference between the 75th and 25th percentile; Difference between the 95th and 5th percentile; Difference between the maximum and the minimum

; Minimum; 5th percentile; 25th percentile; Mean; 75th percentile; 95th percentile; Maximum

A.2.1 Routing Table Size Data

66 | 33 2.1 | 34 4 6 6 | 30 30 31 34 35 36 36
66 | 66 0.0 | 66 0 0 0 | 66 66 66 66 66 66 66
72 | 36 2.7 | 35 6 8 8 | 32 32 33 35 39 40 40
72 | 34 2.8 | 34 6 8 8 | 30 30 32 34 38 38 38
77 | 35 2.3 | 34 3 7 8 | 31 32 33 34 36 39 39
77 | 35 2.1 | 35 3 7 8 | 31 32 33 35 36 39 39
79 | 35 2.6 | 34 4 9 9 | 30 30 33 34 37 39 39
79 | 36 2.9 | 34 6 8 8 | 33 33 34 34 40 41 41
90 | 37 2.7 | 36 4 9 10 | 32 33 34 36 38 42 42

52

90 | 35 2.4 | 35 2 7 9 | 30 32 33 35 35 39 39
94 | 37 2.3 | 37 4 7 8 | 33 34 34 37 38 41 41
94 | 36 1.3 | 36 2 4 4 | 34 34 35 36 37 38 38
98 | 38 3.3 | 37 2 11 11 | 33 33 36 37 38 44 44
98 | 37 2.6 | 37 4 8 10 | 32 34 35 37 39 42 42
100 | 37 2.4 | 36 4 7 9 | 32 34 36 36 40 41 41
100 | 37 2.7 | 37 5 7 8 | 33 34 35 37 40 41 41
107 | 38 3.6 | 37 6 11 11 | 34 34 36 37 42 45 45
107 | 37 1.8 | 38 3 6 8 | 32 34 36 38 39 40 40
114 | 38 2.4 | 39 3 8 9 | 32 33 37 39 40 41 41
114 | 38 2.5 | 39 2 8 8 | 33 33 38 39 40 41 41
116 | 38 2.2 | 38 4 8 9 | 33 34 36 38 40 42 42
116 | 38 2.1 | 39 2 7 9 | 32 34 37 39 39 41 41
140 | 40 2.7 | 40 5 7 8 | 35 36 37 40 42 43 43
140 | 40 3.5 | 39 5 12 12 | 35 35 37 39 42 47 47
151 | 40 2.1 | 41 3 7 10 | 33 36 38 41 41 43 43
151 | 40 2.7 | 40 2 10 11 | 34 35 40 40 42 45 45
157 | 41 2.6 | 40 4 8 9 | 35 36 39 40 43 44 44
157 | 40 1.8 | 41 3 6 7 | 35 36 39 41 42 42 42
174 | 42 2.8 | 42 5 9 12 | 35 38 39 42 44 47 47
174 | 43 4.5 | 43 5 14 18 | 33 37 40 43 45 51 51
185 | 42 1.6 | 42 3 5 5 | 39 39 40 42 43 44 44
185 | 42 2.6 | 41 3 9 10 | 37 38 41 41 44 47 47
193 | 43 3.7 | 42 7 11 12 | 37 38 41 42 48 49 49
193 | 43 3.0 | 42 5 10 10 | 37 37 41 42 46 47 47
216 | 44 3.5 | 45 6 11 11 | 39 39 42 45 48 50 50
216 | 45 3.9 | 43 6 14 15 | 37 38 42 43 48 52 52
239 | 46 4.1 | 46 6 16 16 | 38 38 43 46 49 54 54
239 | 46 3.4 | 45 6 10 11 | 39 40 44 45 50 50 50
239 | 46 4.0 | 46 6 13 14 | 40 41 43 46 49 54 54
239 | 46 3.7 | 46 6 13 13 | 39 39 43 46 49 52 52
256 | 47 3.3 | 48 5 9 11 | 41 43 43 48 48 52 52
256 | 47 4.0 | 46 8 12 13 | 41 42 44 46 52 54 54
256 | 47 3.2 | 47 3 12 13 | 39 40 45 47 48 52 52
256 | 47 3.5 | 48 5 12 13 | 39 40 44 48 49 52 52
256 | 47 4.5 | 47 7 17 17 | 38 38 44 47 51 55 55
270 | 47 2.8 | 48 5 9 10 | 41 42 45 48 50 51 51
270 | 48 3.9 | 48 7 12 15 | 39 42 45 48 52 54 54
283 | 49 5.3 | 48 9 18 18 | 39 39 45 48 54 57 57
283 | 48 3.3 | 49 4 10 13 | 40 43 47 49 51 53 53
289 | 49 3.8 | 50 6 12 13 | 40 41 46 50 52 53 53
289 | 49 3.9 | 49 5 13 15 | 42 44 46 49 51 57 57
306 | 50 4.3 | 49 5 15 16 | 43 44 48 49 53 59 59
306 | 50 3.3 | 49 4 12 14 | 42 44 48 49 52 56 56
325 | 51 3.4 | 52 5 10 11 | 44 45 49 52 54 55 55
325 | 51 4.1 | 50 5 14 16 | 43 45 49 50 54 59 59
327 | 51 2.9 | 51 6 8 9 | 46 47 47 51 53 55 55
327 | 51 4.0 | 52 6 14 14 | 44 44 48 52 54 58 58
346 | 53 4.4 | 53 5 15 16 | 45 46 50 53 55 61 61
346 | 52 4.2 | 53 6 14 15 | 44 45 50 53 56 59 59
348 | 52 3.3 | 52 3 12 12 | 46 46 50 52 53 58 58
348 | 53 4.1 | 53 5 14 16 | 43 45 50 53 55 59 59
356 | 53 4.8 | 54 7 16 17 | 44 45 50 54 57 61 61
356 | 53 4.8 | 52 6 17 18 | 46 47 50 52 56 64 64

53

405 | 55 3.3 | 55 5 9 15 | 48 50 53 55 58 59 63
405 | 57 5.8 | 56 6 21 26 | 44 49 53 56 59 70 70
413 | 56 3.8 | 55 5 12 12 | 52 52 53 55 58 64 64
413 | 57 5.1 | 57 5 20 24 | 43 47 55 57 60 67 67
421 | 56 4.2 | 56 5 18 18 | 48 48 53 56 58 66 66
421 | 58 5.9 | 57 9 19 27 | 42 50 54 57 63 69 69
465 | 58 4.9 | 57 6 16 19 | 49 52 55 57 61 68 68
465 | 59 3.9 | 59 6 12 14 | 50 52 57 59 63 64 64
492 | 61 3.8 | 60 5 13 14 | 54 55 58 60 63 68 68
492 | 61 4.3 | 59 5 14 14 | 55 55 58 59 63 69 69
512 | 63 5.3 | 65 10 15 17 | 52 54 58 65 68 69 69
512 | 62 5.9 | 62 7 20 26 | 50 56 58 62 65 76 76
532 | 65 6.6 | 64 9 23 23 | 53 53 61 64 70 76 76
532 | 62 4.8 | 62 5 17 20 | 53 56 59 62 64 73 73
540 | 63 3.7 | 63 7 13 15 | 55 57 60 63 67 70 70
540 | 63 4.8 | 62 8 16 18 | 53 55 59 62 67 71 71
542 | 63 4.6 | 64 6 16 17 | 55 56 59 64 65 72 72
542 | 63 4.8 | 63 5 18 19 | 56 57 60 63 65 75 75
550 | 64 5.3 | 63 9 19 20 | 55 56 60 63 69 75 75
550 | 63 3.5 | 65 7 9 11 | 56 58 60 65 67 67 67
571 | 64 5.8 | 63 8 20 21 | 54 55 61 63 69 75 75
571 | 65 6.3 | 66 8 24 24 | 54 54 60 66 68 78 78
589 | 65 5.1 | 65 6 18 19 | 55 56 62 65 68 74 74
589 | 66 6.3 | 64 8 23 23 | 58 58 62 64 70 81 81
611 | 67 6.6 | 66 11 22 22 | 58 58 61 66 72 80 80
611 | 65 5.3 | 65 8 15 16 | 58 59 61 65 69 74 74
612 | 65 6.6 | 65 12 20 23 | 54 57 59 65 71 77 77
612 | 65 6.1 | 64 10 19 19 | 56 56 60 64 70 75 75
613 | 66 7.4 | 67 9 26 30 | 54 58 60 67 69 84 84
613 | 68 5.7 | 68 9 20 21 | 56 57 63 68 72 77 77
645 | 68 7.2 | 67 11 25 27 | 57 59 62 67 73 84 84
645 | 66 5.8 | 66 10 19 20 | 57 58 60 66 70 77 77
657 | 68 7.4 | 68 14 23 24 | 56 57 61 68 75 80 80
657 | 67 4.8 | 68 8 17 18 | 58 59 62 68 70 76 76
709 | 68 6.1 | 67 12 19 20 | 59 60 63 67 75 79 79
709 | 68 7.4 | 72 14 24 25 | 57 58 61 72 75 82 82
897 | 72 10.8 | 66 21 32 33 | 59 60 63 66 84 92 92
897 | 68 9.1 | 65 12 32 34 | 58 60 62 65 74 92 92
922 | 74 13.2 | 66 25 35 37 | 58 60 62 66 87 95 95
922 | 69 11.7 | 64 7 35 38 | 57 60 62 64 69 95 95
990 | 70 12.3 | 64 5 41 43 | 59 61 63 64 68 102 102
990 | 68 11.6 | 64 4 36 39 | 58 60 62 64 66 96 97

1024 | 74 12.7 | 67 22 38 40 | 60 62 64 67 86 100 100
1024 | 66 7.0 | 64 3 29 30 | 59 60 62 64 65 89 89
1024 | 72 12.4 | 65 18 36 38 | 59 61 63 65 81 97 97
1039 | 68 9.6 | 64 5 32 35 | 57 60 63 64 68 92 92
1039 | 74 13.2 | 66 23 31 42 | 60 62 64 66 87 93 102
1062 | 74 15.1 | 65 32 38 41 | 59 61 64 65 96 99 100
1062 | 70 9.7 | 66 5 29 31 | 60 62 64 66 69 91 91
1269 | 67 7.7 | 65 3 34 36 | 60 62 64 65 67 96 96
1269 | 71 16.4 | 66 4 60 62 | 59 61 64 66 68 121 121
1400 | 68 7.8 | 66 3 10 48 | 61 63 65 66 68 73 109
1400 | 69 12.1 | 66 3 51 54 | 60 63 65 66 68 114 114
1409 | 69 12.4 | 66 3 56 57 | 61 62 65 66 68 118 118

54

1409 | 69 10.5 | 66 3 48 50 | 61 63 65 66 68 111 111
1544 | 72 17.5 | 67 4 64 65 | 62 63 65 67 69 127 127
1544 | 67 2.8 | 67 3 9 14 | 61 63 65 67 68 72 75
1597 | 70 13.6 | 67 4 60 63 | 61 64 65 67 69 124 124
1597 | 67 2.3 | 67 3 6 11 | 62 64 66 67 69 70 73
1638 | 71 16.4 | 67 5 69 71 | 61 63 65 67 70 132 132
1638 | 67 2.4 | 67 3 9 16 | 61 64 66 67 69 73 77
1695 | 68 2.5 | 67 3 8 12 | 62 64 66 67 69 72 74
1695 | 68 2.9 | 67 3 10 14 | 62 63 66 67 69 73 76
1787 | 68 2.9 | 68 4 9 13 | 62 64 66 68 70 73 75
1787 | 68 2.4 | 68 4 7 11 | 62 64 66 68 70 71 73
1795 | 68 2.8 | 68 4 9 15 | 61 64 66 68 70 73 76
1795 | 68 3.0 | 68 4 10 14 | 62 63 66 68 70 73 76
1871 | 68 2.6 | 68 4 8 15 | 62 64 66 68 70 72 77
1871 | 68 2.5 | 68 3 8 14 | 62 64 67 68 70 72 76
1947 | 68 2.7 | 68 3 9 14 | 63 65 67 68 70 74 77
1947 | 74 20.5 | 68 4 86 88 | 62 64 67 68 71 150 150
2016 | 68 2.5 | 68 3 9 13 | 63 65 67 68 70 74 76
2016 | 69 2.7 | 69 4 9 14 | 63 65 67 69 71 74 77
2061 | 69 3.1 | 69 4 11 16 | 62 64 67 69 71 75 78
2061 | 69 2.5 | 69 4 8 16 | 63 65 67 69 71 73 79
2397 | 71 3.2 | 71 5 11 17 | 63 66 68 71 73 77 80
2397 | 70 3.3 | 70 5 11 18 | 62 65 68 70 73 76 80
2403 | 70 3.1 | 70 4 10 19 | 62 66 68 70 72 76 81
2403 | 70 3.1 | 70 5 10 16 | 62 66 68 70 73 76 78
2555 | 71 2.7 | 71 4 9 12 | 65 66 69 71 73 75 77
2555 | 71 2.9 | 71 4 10 16 | 62 67 69 71 73 77 78
2760 | 72 3.1 | 72 5 10 15 | 64 67 69 72 74 77 79
2760 | 72 3.7 | 71 6 12 19 | 64 66 69 71 75 78 83
2790 | 72 3.4 | 72 4 11 18 | 63 66 70 72 74 77 81
2790 | 72 3.3 | 72 4 10 19 | 63 67 70 72 74 77 82
2825 | 72 3.1 | 72 4 10 15 | 65 67 70 72 74 77 80
2825 | 72 2.8 | 72 4 10 15 | 64 67 70 72 74 77 79
2971 | 73 3.4 | 73 5 12 17 | 64 67 70 73 75 79 81
2971 | 73 3.3 | 72 5 12 14 | 66 67 70 72 75 79 80
2996 | 73 3.8 | 73 5 12 20 | 63 67 70 73 75 79 83
2996 | 73 3.5 | 73 4 12 19 | 65 67 71 73 75 79 84
3096 | 73 3.6 | 72 6 12 15 | 65 67 70 72 76 79 80
3096 | 73 3.6 | 73 4 11 19 | 65 68 71 73 75 79 84
3224 | 73 3.4 | 73 5 11 17 | 66 68 71 73 76 79 83
3224 | 73 3.5 | 73 5 12 20 | 63 68 71 73 76 80 83
3878 | 76 4.1 | 76 6 13 20 | 66 70 73 76 79 83 86
3878 | 76 3.7 | 76 4 14 17 | 68 70 74 76 78 84 85
4096 | 77 3.9 | 77 6 12 21 | 65 71 74 77 80 83 86
4096 | 77 3.9 | 77 5 13 21 | 66 70 74 77 79 83 87
4096 | 77 3.8 | 77 6 11 21 | 67 72 74 77 80 83 88
4602 | 79 4.1 | 79 5 14 23 | 69 72 77 79 82 86 92
4602 | 79 4.4 | 79 6 14 26 | 67 72 76 79 82 86 93
4967 | 81 4.2 | 81 5 14 21 | 70 74 78 81 83 88 91
4967 | 80 4.8 | 79 6 16 25 | 70 72 77 79 83 88 95
5000 | 81 4.5 | 80 6 15 21 | 70 73 78 80 84 88 91
5000 | 80 3.9 | 80 6 12 20 | 70 74 77 80 83 86 90
5130 | 82 4.7 | 82 7 16 22 | 70 73 79 82 86 89 92
5130 | 81 5.0 | 81 6 19 24 | 70 73 78 81 84 92 94

55

5156 | 81 4.5 | 81 8 14 21 | 72 74 77 81 85 88 93
5156 | 81 4.9 | 81 7 15 27 | 67 74 78 81 85 89 94
5161 | 81 4.9 | 81 6 17 23 | 70 74 78 81 84 91 93
5161 | 81 4.6 | 80 6 16 27 | 69 74 78 80 84 90 96
5375 | 82 5.0 | 82 7 16 23 | 71 74 79 82 86 90 94
5375 | 82 4.7 | 82 6 16 26 | 69 74 79 82 85 90 95
5402 | 82 4.6 | 82 7 16 25 | 69 74 78 82 85 90 94
5402 | 82 4.4 | 82 5 13 24 | 71 75 79 82 84 88 95
5454 | 82 4.7 | 82 7 16 29 | 71 75 79 82 86 91 100
5454 | 82 4.6 | 82 5 15 32 | 68 75 80 82 85 90 100
6545 | 87 5.1 | 87 6 18 26 | 73 78 83 87 89 96 99
6545 | 86 4.9 | 86 6 16 24 | 74 79 83 86 89 95 98
6752 | 87 5.1 | 88 8 17 25 | 76 79 83 88 91 96 101
6752 | 88 5.6 | 88 8 20 32 | 70 77 84 88 92 97 102
6800 | 88 5.4 | 87 7 19 32 | 73 79 84 87 91 98 105
6800 | 87 4.8 | 87 6 15 24 | 75 80 84 87 90 95 99
7144 | 88 5.4 | 88 7 17 27 | 76 80 85 88 92 97 103
7144 | 88 4.9 | 88 6 16 28 | 76 81 85 88 91 97 104
7173 | 88 4.9 | 88 6 17 31 | 76 80 85 88 91 97 107
7173 | 89 5.8 | 89 8 20 28 | 75 79 85 89 93 99 103
7290 | 89 5.7 | 89 8 19 29 | 74 79 85 89 93 98 103
7290 | 89 4.8 | 89 8 16 22 | 78 81 85 89 93 97 100
7866 | 91 5.6 | 90 8 19 26 | 81 83 87 90 95 102 107
7866 | 92 5.4 | 91 7 18 31 | 77 83 88 91 95 101 108
8175 | 91 5.4 | 91 7 20 29 | 75 83 88 91 95 103 104
8175 | 92 5.6 | 91 8 19 30 | 75 83 88 91 96 102 105
8668 | 93 5.3 | 93 7 17 29 | 81 86 90 93 97 103 110
8668 | 94 5.3 | 94 8 16 27 | 80 86 90 94 98 102 107
9238 | 94 5.6 | 94 8 20 27 | 82 86 90 94 98 106 109
9238 | 94 4.9 | 94 7 16 26 | 80 87 90 94 97 103 106
10525 | 98 6.9 | 100 13 20 33 | 82 88 91 100 104 108 115
10525 | 97 7.0 | 97 10 23 29 | 85 88 92 97 102 111 114
10540 | 97 6.8 | 97 10 22 30 | 84 88 92 97 102 110 114
10540 | 98 7.6 | 98 12 24 33 | 85 88 92 98 104 112 118
12535 | 100 9.2 | 97 16 25 36 | 86 89 91 97 107 114 122
12535 | 98 8.5 | 94 13 25 33 | 87 89 91 94 104 114 120
12969 | 99 9.4 | 94 15 28 38 | 87 89 92 94 107 117 125
12969 | 99 9.8 | 95 15 29 38 | 88 89 92 95 107 118 126
14133 | 101 11.2 | 95 18 33 58 | 86 90 92 95 110 123 144
14133 | 102 11.2 | 95 19 31 41 | 87 90 93 95 112 121 128
15298 | 102 13.3 | 95 22 37 48 | 89 90 93 95 115 127 137
15298 | 100 11.6 | 94 7 34 42 | 87 90 92 94 99 124 129
15464 | 101 11.9 | 95 20 34 44 | 88 90 93 95 113 124 132
15464 | 100 11.4 | 95 13 32 50 | 89 91 93 95 106 123 139
15768 | 102 12.9 | 95 20 36 47 | 88 90 93 95 113 126 135
15768 | 100 11.3 | 94 11 32 41 | 89 91 93 94 104 123 130
16384 | 100 12.3 | 94 4 36 52 | 88 90 93 94 97 126 140
16384 | 101 12.6 | 95 18 35 50 | 88 91 93 95 111 126 138
16384 | 101 13.1 | 95 16 37 51 | 90 91 93 95 109 128 141
17684 | 102 14.0 | 95 5 41 59 | 88 92 94 95 99 133 147
17684 | 100 12.5 | 95 5 41 55 | 89 91 93 95 98 132 144
19226 | 97 8.9 | 95 3 31 49 | 90 92 94 95 97 123 139
19226 | 100 13.3 | 95 4 41 55 | 90 92 94 95 98 133 145
20849 | 99 10.0 | 96 3 37 56 | 90 92 95 96 98 129 146

56

20849 | 99 12.0 | 96 4 43 70 | 89 92 94 96 98 135 159
21442 | 99 11.7 | 96 4 44 67 | 91 93 94 96 98 137 158
21442 | 99 11.2 | 96 4 42 57 | 91 92 94 96 98 134 148
22342 | 98 9.9 | 96 3 15 56 | 91 93 95 96 98 108 147
22342 | 99 10.7 | 96 3 35 66 | 91 93 95 96 98 128 157
23202 | 98 9.8 | 96 3 8 71 | 90 93 95 96 98 101 161
23202 | 98 9.9 | 96 3 11 63 | 90 93 95 96 98 104 153
24436 | 98 10.5 | 96 3 9 63 | 91 93 95 96 98 102 154
24436 | 98 8.0 | 97 3 9 58 | 92 93 95 97 98 102 150
25278 | 98 8.0 | 97 4 9 68 | 90 93 95 97 99 102 158
25278 | 100 13.4 | 97 4 46 79 | 91 93 95 97 99 139 170
26466 | 98 7.2 | 98 3 8 75 | 91 94 96 98 99 102 166
26466 | 99 11.2 | 97 3 10 74 | 92 94 96 97 99 104 166
26496 | 98 7.0 | 97 4 9 81 | 91 93 95 97 99 102 172
26496 | 98 8.1 | 97 3 9 74 | 92 93 96 97 99 102 166
26894 | 100 11.9 | 98 4 10 85 | 91 93 96 98 100 103 176
26894 | 98 8.6 | 97 3 8 78 | 91 94 96 97 99 102 169
27865 | 98 7.5 | 98 3 9 86 | 92 94 96 98 99 103 178
27865 | 98 8.0 | 97 4 8 88 | 92 94 96 97 100 102 180
28676 | 99 7.3 | 98 3 11 74 | 91 93 96 98 99 104 165
28676 | 98 6.0 | 98 4 10 78 | 92 93 96 98 100 103 170
28823 | 99 7.3 | 98 3 8 77 | 92 94 96 98 99 102 169
28823 | 99 8.4 | 98 4 10 87 | 92 94 96 98 100 104 179
33146 | 101 14.7 | 99 4 9 120 | 92 95 97 99 101 104 212
33146 | 99 4.9 | 99 4 9 69 | 93 95 97 99 101 104 162
33494 | 99 6.5 | 99 4 9 99 | 93 95 97 99 101 104 192
33494 | 99 2.8 | 99 4 8 17 | 92 95 97 99 101 103 109
33855 | 99 3.0 | 99 4 10 19 | 90 95 97 99 101 105 109
33855 | 100 10.0 | 99 3 10 116 | 92 95 98 99 101 105 208
37192 | 100 3.1 | 100 4 10 17 | 93 95 98 100 102 105 110
37192 | 101 3.1 | 100 5 10 18 | 92 96 98 100 103 106 110
38763 | 100 2.7 | 100 4 9 15 | 94 96 98 100 102 105 109
38763 | 101 6.9 | 100 4 11 106 | 93 95 98 100 102 106 199
38908 | 101 3.1 | 101 5 10 15 | 94 96 98 101 103 106 109
38908 | 101 3.1 | 100 5 10 16 | 92 96 98 100 103 106 108
40188 | 102 10.5 | 101 4 12 122 | 93 96 99 101 103 108 215
40188 | 101 3.0 | 100 5 10 15 | 94 96 98 100 103 106 109
41640 | 102 3.1 | 101 3 11 18 | 93 96 100 101 103 107 111
41640 | 101 3.2 | 101 4 10 19 | 94 97 99 101 103 107 113
43155 | 102 3.2 | 102 4 11 19 | 92 97 100 102 104 108 111
43155 | 102 3.2 | 102 4 10 17 | 94 97 100 102 104 107 111
44845 | 102 3.4 | 102 5 11 17 | 94 97 100 102 105 108 111
44845 | 102 3.3 | 102 4 11 19 | 94 97 100 102 104 108 113
46825 | 103 3.4 | 102 5 11 18 | 95 97 100 102 105 108 113
46825 | 102 3.4 | 102 5 11 18 | 95 97 100 102 105 108 113
50226 | 103 3.4 | 103 4 11 20 | 94 98 101 103 105 109 114
50226 | 103 3.9 | 104 5 12 23 | 93 97 101 104 106 109 116
62700 | 106 4.0 | 106 5 13 20 | 95 100 104 106 109 113 115
62700 | 106 3.9 | 106 6 13 20 | 97 99 103 106 109 112 117
64497 | 107 4.4 | 107 5 14 27 | 95 101 104 107 109 115 122
64497 | 107 3.8 | 107 5 13 19 | 98 100 104 107 109 113 117
65536 | 107 3.8 | 107 6 13 19 | 98 100 104 107 110 113 117
65536 | 107 4.0 | 107 6 14 22 | 96 100 104 107 110 114 118
65536 | 107 4.0 | 107 6 13 23 | 98 101 104 107 110 114 121

57

67433 | 108 4.0 | 108 5 14 24 | 98 101 105 108 110 115 122
67433 | 107 4.1 | 107 6 13 24 | 97 101 104 107 110 114 121
78442 | 110 4.1 | 110 5 14 24 | 100 104 108 110 113 118 124
78442 | 109 4.3 | 109 6 13 22 | 100 103 106 109 112 116 122
81254 | 111 4.6 | 111 5 15 34 | 99 103 108 111 113 118 133
81254 | 111 4.6 | 111 6 15 26 | 101 103 108 111 114 118 127
88955 | 113 4.4 | 112 5 15 22 | 102 105 110 112 115 120 124
88955 | 113 4.8 | 113 6 16 28 | 99 105 110 113 116 121 127
92905 | 114 4.4 | 114 7 16 24 | 102 106 110 114 117 122 126
92905 | 114 4.5 | 114 7 15 22 | 102 107 110 114 117 122 124
93623 | 114 4.2 | 114 6 14 22 | 103 107 111 114 117 121 125
93623 | 114 4.6 | 114 7 15 29 | 100 107 111 114 118 122 129
94561 | 114 4.9 | 114 6 17 32 | 100 106 111 114 117 123 132
94561 | 114 4.6 | 114 7 15 25 | 101 106 110 114 117 121 126
95372 | 115 4.7 | 115 7 15 24 | 104 107 111 115 118 122 128
95372 | 114 4.7 | 114 6 16 21 | 103 106 111 114 117 122 124
99160 | 115 5.0 | 115 6 17 31 | 104 107 112 115 118 124 135
99160 | 115 5.1 | 115 8 16 27 | 104 107 111 115 119 123 131
101225 | 116 4.5 | 115 6 14 29 | 105 109 112 115 118 123 134
101225 | 116 4.7 | 116 6 16 25 | 106 109 113 116 119 125 131
101559 | 116 4.7 | 116 6 15 30 | 101 109 113 116 119 124 131
101559 | 116 4.9 | 116 6 17 28 | 103 108 113 116 119 125 131
105691 | 116 4.9 | 116 7 17 24 | 104 108 113 116 120 125 128
105691 | 117 4.9 | 117 5 17 29 | 104 109 114 117 119 126 133
110967 | 118 4.9 | 117 6 16 31 | 100 110 114 117 120 126 131
110967 | 118 4.8 | 118 6 16 31 | 105 110 115 118 121 126 136
111404 | 118 5.1 | 118 6 16 27 | 105 110 115 118 121 126 132
111404 | 118 4.5 | 118 5 14 27 | 102 111 115 118 120 125 129
114879 | 119 5.2 | 119 7 17 36 | 100 111 115 119 122 128 136
114879 | 119 5.2 | 119 7 17 32 | 104 110 115 119 122 127 136
129414 | 122 5.2 | 121 6 17 32 | 111 114 119 121 125 131 143
129414 | 122 5.2 | 121 7 17 31 | 108 114 118 121 125 131 139
132549 | 122 5.8 | 122 8 18 33 | 108 114 118 122 126 132 141
132549 | 122 5.2 | 122 6 17 31 | 108 114 119 122 125 131 139
135777 | 123 5.7 | 122 8 19 30 | 108 115 119 122 127 134 138
135777 | 122 5.6 | 122 7 18 34 | 106 114 119 122 126 132 140
137216 | 123 5.3 | 123 8 18 26 | 112 116 119 123 127 134 138
137216 | 123 5.5 | 123 8 17 30 | 112 116 119 123 127 133 142
139718 | 123 5.3 | 123 8 18 30 | 110 115 119 123 127 133 140
139718 | 123 5.3 | 123 8 16 29 | 112 116 119 123 127 132 141
149844 | 125 6.4 | 125 9 21 32 | 111 116 120 125 129 137 143
149844 | 126 5.6 | 126 9 19 28 | 112 117 121 126 130 136 140
155579 | 126 5.9 | 127 9 18 32 | 115 118 122 127 131 136 147
155579 | 127 6.4 | 126 8 21 36 | 114 117 122 126 130 138 150
168788 | 128 6.9 | 128 11 23 36 | 112 117 122 128 133 140 148
168788 | 128 7.6 | 128 12 23 38 | 115 118 122 128 134 141 153
180324 | 129 7.9 | 128 13 24 32 | 116 119 122 128 135 143 148
180324 | 128 7.5 | 127 13 23 33 | 117 119 122 127 135 142 150
182842 | 128 7.7 | 128 14 23 33 | 117 118 121 128 135 141 150
182842 | 127 7.5 | 125 13 22 31 | 116 118 121 125 134 140 147
186034 | 128 8.2 | 125 13 26 35 | 115 118 121 125 134 144 150
186034 | 129 8.4 | 129 15 24 42 | 111 118 121 129 136 142 153
187594 | 129 8.3 | 128 14 25 36 | 114 118 122 128 136 143 150
187594 | 129 8.5 | 126 13 26 40 | 116 119 122 126 135 145 156

58

193543 | 130 9.1 | 128 16 26 38 | 116 119 122 128 138 145 154
193543 | 129 9.3 | 125 16 28 38 | 116 118 121 125 137 146 154
211998 | 131 10.5 | 125 17 30 50 | 117 120 122 125 139 150 167
211998 | 130 10.1 | 125 17 29 42 | 116 119 122 125 139 148 158
212668 | 130 10.6 | 124 18 30 39 | 116 119 121 124 139 149 155
212668 | 131 10.3 | 126 18 29 45 | 115 120 122 126 140 149 160
220475 | 129 10.1 | 124 15 29 40 | 117 120 122 124 137 149 157
220475 | 130 10.6 | 124 17 31 42 | 116 119 122 124 139 150 158
223090 | 130 10.8 | 124 19 30 42 | 118 120 122 124 141 150 160
223090 | 131 11.0 | 125 19 32 39 | 117 120 122 125 141 152 156
227163 | 130 10.9 | 125 18 33 45 | 117 119 122 125 140 152 162
227163 | 129 10.6 | 124 18 31 46 | 117 119 122 124 140 150 163
234239 | 131 12.2 | 124 20 33 59 | 117 120 122 124 142 153 176
234239 | 132 11.9 | 125 20 35 48 | 117 120 123 125 143 155 165
248714 | 132 12.8 | 125 19 37 47 | 118 120 123 125 142 157 165
248714 | 132 12.7 | 125 22 34 49 | 117 121 123 125 145 155 166
252247 | 131 12.4 | 124 15 37 50 | 120 121 123 124 138 158 170
252247 | 132 13.2 | 125 21 40 51 | 119 120 123 125 144 160 170
256849 | 132 13.0 | 125 19 37 52 | 118 121 123 125 142 158 170
256849 | 130 11.6 | 125 5 35 48 | 118 121 123 125 128 156 166
257794 | 130 11.6 | 125 16 35 42 | 119 121 123 125 139 156 161
257794 | 130 12.1 | 125 5 36 49 | 117 121 123 125 128 157 166
262144 | 130 11.6 | 125 5 34 47 | 119 121 123 125 128 155 166
262144 | 130 12.8 | 125 7 38 55 | 117 121 123 125 130 159 172
262144 | 129 11.8 | 124 5 36 53 | 118 121 122 124 127 157 171
282691 | 131 13.1 | 125 5 39 55 | 119 121 123 125 128 160 174
282691 | 130 12.6 | 125 4 43 52 | 119 121 123 125 127 164 171
292185 | 130 13.3 | 125 4 42 64 | 120 121 123 125 127 163 184
292185 | 131 14.2 | 125 5 43 55 | 119 121 123 125 128 164 174
327699 | 131 13.9 | 126 5 45 71 | 120 122 124 126 129 167 191
327699 | 128 11.0 | 125 3 41 55 | 120 122 124 125 127 163 175
333128 | 128 10.9 | 126 3 39 74 | 120 121 124 126 127 160 194
333128 | 128 11.3 | 126 3 43 66 | 120 122 124 126 127 165 186
370321 | 129 11.8 | 127 4 27 76 | 122 122 125 127 129 149 198
370321 | 131 14.4 | 127 4 54 69 | 121 123 125 127 129 177 190
376186 | 129 11.6 | 127 3 11 63 | 122 123 125 127 128 134 185
376186 | 129 11.0 | 127 4 41 64 | 121 123 124 127 128 164 185
376561 | 128 10.7 | 126 3 9 75 | 121 123 125 126 128 132 196
376561 | 129 10.7 | 127 3 11 66 | 120 123 125 127 128 134 186
396823 | 129 9.5 | 127 3 9 70 | 121 123 126 127 129 132 191
396823 | 129 10.2 | 127 4 10 76 | 121 123 125 127 129 133 197
414618 | 128 7.7 | 127 3 8 75 | 122 123 126 127 129 131 197
414618 | 128 7.7 | 127 4 9 77 | 121 123 125 127 129 132 198
415024 | 130 12.7 | 127 3 11 78 | 121 123 126 127 129 134 199
415024 | 129 10.8 | 127 3 10 87 | 120 123 126 127 129 133 207
456137 | 129 8.9 | 128 4 9 86 | 120 124 126 128 130 133 206
456137 | 129 10.6 | 128 4 8 88 | 121 124 126 128 130 132 209
464041 | 128 4.3 | 128 4 9 59 | 122 124 126 128 130 133 181
464041 | 129 7.7 | 128 3 10 76 | 123 124 127 128 130 134 199
489220 | 129 4.8 | 128 3 9 71 | 121 124 127 128 130 133 192
489220 | 129 4.9 | 128 4 9 70 | 123 124 126 128 130 133 193
522924 | 129 5.7 | 129 4 9 86 | 121 125 127 129 131 134 207
522924 | 129 5.9 | 129 4 10 89 | 123 124 127 129 131 134 212
526827 | 129 2.9 | 129 4 9 17 | 122 125 127 129 131 134 139

59

526827 | 130 9.0 | 129 4 10 102 | 123 125 127 129 131 135 225
556524 | 129 2.9 | 129 5 9 18 | 121 125 127 129 132 134 139
556524 | 130 6.6 | 129 4 10 101 | 123 125 128 129 132 135 224
594179 | 130 3.1 | 130 4 10 15 | 124 125 128 130 132 135 139
594179 | 130 3.1 | 130 4 10 17 | 123 125 128 130 132 135 140
601537 | 130 2.9 | 130 4 10 17 | 123 126 128 130 132 136 140
601537 | 130 3.1 | 130 4 10 16 | 123 125 128 130 132 135 139
623975 | 131 3.0 | 131 4 11 16 | 124 126 129 131 133 137 140
623975 | 131 6.7 | 130 4 9 104 | 122 126 128 130 132 135 226
633731 | 131 2.9 | 131 3 10 19 | 123 126 129 131 132 136 142
633731 | 131 3.0 | 130 4 10 16 | 123 126 128 130 132 136 139
650258 | 131 3.1 | 131 4 10 16 | 124 126 129 131 133 136 140
650258 | 131 3.2 | 131 4 10 20 | 123 126 129 131 133 136 143
675966 | 131 3.1 | 131 4 11 16 | 124 126 129 131 133 137 140
675966 | 131 3.2 | 131 5 11 18 | 123 126 129 131 134 137 141
711698 | 132 3.3 | 132 4 11 18 | 124 127 130 132 134 138 142
711698 | 132 3.2 | 132 5 10 15 | 124 127 129 132 134 137 139
815935 | 134 3.8 | 133 5 13 23 | 123 127 131 133 136 140 146
815935 | 133 3.3 | 133 5 11 17 | 125 128 131 133 136 139 142
878307 | 134 3.7 | 134 5 13 20 | 125 128 132 134 137 141 145
878307 | 134 3.5 | 134 5 12 18 | 125 129 132 134 137 141 143
986780 | 136 4.1 | 136 5 14 24 | 124 129 133 136 138 143 148
986780 | 136 3.6 | 136 5 13 20 | 126 130 134 136 139 143 146

1008012 | 136 4.0 | 136 6 12 22 | 126 130 133 136 139 142 148
1008012 | 136 3.9 | 136 5 13 22 | 127 130 134 136 139 143 149
1048576 | 137 3.9 | 137 6 13 19 | 129 131 134 137 140 144 148
1048576 | 137 3.8 | 137 5 13 22 | 128 131 134 137 139 144 150
1048576 | 137 4.1 | 136 5 14 22 | 127 130 134 136 139 144 149
1069151 | 137 3.8 | 137 5 12 28 | 126 131 135 137 140 143 154
1069151 | 137 4.1 | 137 6 13 21 | 126 130 134 137 140 143 147
1113665 | 138 3.9 | 138 5 13 21 | 129 132 135 138 140 145 150
1113665 | 138 4.0 | 138 6 13 22 | 128 132 135 138 141 145 150
1128563 | 138 3.9 | 138 5 12 25 | 124 132 135 138 140 144 149
1128563 | 138 4.3 | 138 6 15 21 | 128 131 135 138 141 146 149
1192316 | 139 4.2 | 139 6 13 25 | 128 132 136 139 142 145 153
1192316 | 139 4.2 | 139 6 14 21 | 130 132 136 139 142 146 151
1368818 | 142 4.4 | 142 6 15 22 | 130 134 139 142 145 149 152
1368818 | 142 4.6 | 142 7 15 22 | 131 135 138 142 145 150 153
1449558 | 143 4.4 | 143 6 14 22 | 134 137 140 143 146 151 156
1449558 | 143 4.9 | 143 7 17 26 | 132 135 140 143 147 152 158
1463861 | 143 4.7 | 143 6 15 26 | 129 136 140 143 146 151 155
1463861 | 143 4.5 | 143 7 15 24 | 132 136 140 143 147 151 156
1781937 | 148 5.0 | 148 7 17 27 | 135 140 144 148 151 157 162
1781937 | 148 5.0 | 148 7 17 25 | 137 139 144 148 151 156 162
1785742 | 148 5.4 | 148 6 18 38 | 135 138 145 148 151 156 173
1785742 | 147 4.8 | 148 7 16 32 | 132 140 144 148 151 156 164
1884161 | 150 4.9 | 150 7 16 25 | 138 142 146 150 153 158 163
1884161 | 149 5.1 | 149 6 17 28 | 137 141 146 149 152 158 165
2061614 | 151 5.4 | 152 7 18 26 | 138 143 148 152 155 161 164
2061614 | 152 5.1 | 152 7 16 31 | 139 144 148 152 155 160 170
2366039 | 155 5.4 | 155 8 16 31 | 141 148 151 155 159 164 172
2366039 | 155 6.5 | 154 9 21 38 | 141 145 150 154 159 166 179
2392176 | 155 5.9 | 155 9 19 28 | 143 146 150 155 159 165 171
2392176 | 155 6.1 | 154 9 19 31 | 141 147 150 154 159 166 172

60

2417864 | 155 6.2 | 155 8 20 32 | 141 147 151 155 159 167 173
2417864 | 156 6.1 | 155 9 20 31 | 143 147 151 155 160 167 174
2525166 | 156 6.0 | 156 9 20 28 | 144 147 151 156 160 167 172
2525166 | 156 6.4 | 156 8 20 37 | 140 147 152 156 160 167 177
2672788 | 157 7.1 | 156 11 22 37 | 145 147 151 156 162 169 182
2672788 | 158 6.9 | 158 11 21 32 | 146 148 151 158 162 169 178
2861570 | 159 7.8 | 159 12 25 37 | 144 147 152 159 164 172 181
2861570 | 159 7.3 | 160 13 21 31 | 146 149 152 160 165 170 177
2884139 | 158 7.7 | 156 12 24 39 | 146 148 151 156 163 172 185
2884139 | 159 7.8 | 159 14 25 33 | 144 148 152 159 166 173 177
3184126 | 160 9.2 | 156 15 27 35 | 147 149 152 156 167 176 182
3184126 | 160 9.3 | 158 17 27 40 | 146 149 152 158 169 176 186
3306465 | 160 9.7 | 156 17 28 40 | 146 149 152 156 169 177 186
3306465 | 161 9.8 | 162 17 29 41 | 147 149 152 162 169 178 188
3508605 | 160 11.0 | 154 18 31 47 | 147 149 152 154 170 180 194
3508605 | 161 10.5 | 156 18 31 41 | 145 150 152 156 170 181 186
3663174 | 161 11.5 | 155 19 33 44 | 146 150 152 155 171 183 190
3663174 | 160 11.5 | 154 19 34 44 | 148 149 152 154 171 183 192
3703674 | 161 11.5 | 155 20 33 42 | 148 150 152 155 172 183 190
3703674 | 160 11.3 | 154 18 33 46 | 146 149 152 154 170 182 192
3758810 | 162 12.1 | 155 19 34 49 | 148 150 153 155 172 184 197
3758810 | 161 11.2 | 155 19 32 44 | 149 151 153 155 172 183 193
3878401 | 161 12.1 | 154 20 36 49 | 148 150 152 154 172 186 197
3878401 | 161 11.7 | 155 20 33 40 | 148 150 152 155 172 183 188
3916543 | 161 12.3 | 155 20 35 45 | 149 150 153 155 173 185 194
3916543 | 161 12.9 | 155 19 38 49 | 149 150 153 155 172 188 198
4176245 | 160 11.8 | 154 5 36 49 | 149 151 153 154 158 187 198
4176245 | 159 11.1 | 154 4 34 46 | 148 151 153 154 157 185 194
4194304 | 159 12.1 | 155 4 38 48 | 148 150 153 155 157 188 196
4194304 | 160 11.8 | 155 6 35 59 | 148 150 153 155 159 185 207
4194304 | 160 12.0 | 155 6 35 45 | 150 151 153 155 159 186 195
4263816 | 159 11.2 | 155 4 34 54 | 148 151 153 155 157 185 202
4263816 | 159 11.2 | 155 4 36 49 | 149 150 153 155 157 186 198
4467515 | 160 12.9 | 155 5 40 50 | 149 151 153 155 158 191 199
4467515 | 161 13.3 | 155 4 40 58 | 149 151 153 155 157 191 207
4777900 | 159 11.7 | 155 4 39 62 | 149 151 153 155 157 190 211
4777900 | 161 13.5 | 155 4 42 59 | 149 152 154 155 158 194 208
4874035 | 159 11.1 | 156 3 42 54 | 149 151 154 156 157 193 203
4874035 | 160 13.5 | 155 4 42 60 | 149 152 154 155 158 194 209
5226162 | 159 11.9 | 156 4 40 60 | 150 152 154 156 158 192 210
5226162 | 160 12.7 | 156 4 45 59 | 151 152 154 156 158 197 210
5235935 | 159 11.5 | 156 4 42 60 | 151 152 154 156 158 194 211
5235935 | 159 11.5 | 156 4 43 64 | 149 152 154 156 158 195 213
5450827 | 159 12.3 | 156 4 42 69 | 150 152 154 156 158 194 219
5450827 | 159 11.9 | 156 4 45 60 | 150 152 154 156 158 197 210
5486221 | 158 9.8 | 156 3 34 65 | 151 152 155 156 158 186 216
5486221 | 159 13.0 | 156 4 46 68 | 150 152 154 156 158 198 218
5690571 | 159 11.7 | 157 4 42 69 | 150 153 155 157 159 195 219
5690571 | 159 11.4 | 156 4 45 64 | 150 152 154 156 158 197 214
5875079 | 159 12.3 | 156 4 11 78 | 150 153 155 156 159 164 228
5875079 | 159 10.8 | 157 3 31 71 | 150 153 155 157 158 184 221
5900945 | 158 9.3 | 156 3 8 64 | 151 153 155 156 158 161 215
5900945 | 159 11.1 | 157 3 10 79 | 149 153 155 157 158 163 228
5927368 | 159 12.1 | 156 4 45 76 | 151 152 154 156 158 197 227

61

5927368 | 159 10.9 | 156 3 34 64 | 151 153 155 156 158 187 215
6097084 | 159 11.2 | 156 3 9 80 | 151 153 155 156 158 162 231
6097084 | 159 11.2 | 157 3 12 73 | 150 153 155 157 158 165 223
6597011 | 158 7.2 | 157 4 9 75 | 152 153 155 157 159 162 227
6597011 | 158 9.2 | 157 3 9 72 | 151 153 156 157 159 162 223
6768571 | 159 10.7 | 157 3 9 76 | 151 154 156 157 159 163 227
6768571 | 158 8.1 | 157 4 9 67 | 151 154 155 157 159 163 218
6854107 | 159 9.1 | 158 4 9 77 | 152 154 156 158 160 163 229
6854107 | 159 11.1 | 157 4 10 84 | 152 153 155 157 159 163 236
6932837 | 160 11.5 | 158 3 11 90 | 151 153 156 158 159 164 241
6932837 | 159 10.4 | 157 3 10 84 | 151 153 156 157 159 163 235
7069638 | 158 6.7 | 157 3 8 82 | 151 154 156 157 159 162 233
7069638 | 160 12.0 | 158 3 12 82 | 152 154 156 158 159 166 234
7302069 | 159 11.1 | 158 4 9 90 | 152 154 156 158 160 163 242
7302069 | 159 7.7 | 158 4 9 85 | 152 154 156 158 160 163 237
7450186 | 159 8.4 | 158 4 9 87 | 152 154 156 158 160 163 239
7450186 | 159 10.9 | 158 4 9 90 | 153 154 156 158 160 163 243
8716744 | 160 3.1 | 159 5 10 18 | 151 155 157 159 162 165 169
8716744 | 160 6.1 | 159 3 9 94 | 152 155 158 159 161 164 246
9561827 | 160 3.1 | 160 4 11 18 | 152 155 158 160 162 166 170
9561827 | 160 3.1 | 160 4 11 17 | 153 156 158 160 162 167 170
9887400 | 161 7.7 | 160 4 11 120 | 153 155 158 160 162 166 273
9887400 | 161 9.1 | 160 5 11 112 | 154 156 158 160 163 167 266
9997495 | 160 3.1 | 160 4 10 17 | 152 155 158 160 162 165 169
9997495 | 161 3.1 | 161 4 10 16 | 153 156 159 161 163 166 169
12936965 | 163 3.7 | 163 5 12 19 | 155 158 161 163 166 170 174
12936965 | 164 3.8 | 163 5 13 19 | 155 157 161 163 166 170 174
12997436 | 163 3.6 | 163 5 11 20 | 155 158 161 163 166 169 175
12997436 | 163 3.7 | 163 6 12 21 | 154 158 160 163 166 170 175
13270592 | 163 3.6 | 163 5 12 19 | 154 158 161 163 166 170 173
13270592 | 164 3.4 | 164 5 12 16 | 157 158 161 164 166 170 173
13479768 | 164 3.4 | 164 4 11 20 | 153 159 162 164 166 170 173
13479768 | 164 3.4 | 163 5 11 18 | 156 159 161 163 166 170 174
13946417 | 164 3.4 | 164 5 11 19 | 158 159 162 164 167 170 177
13946417 | 164 3.5 | 164 5 11 19 | 155 159 162 164 167 170 174
14049511 | 164 3.8 | 164 5 12 23 | 154 159 162 164 167 171 177
14049511 | 164 3.7 | 164 5 13 20 | 155 158 162 164 167 171 175
15354841 | 165 3.6 | 165 4 12 20 | 158 160 163 165 167 172 178
15354841 | 166 3.7 | 166 5 12 20 | 156 160 163 166 168 172 176
16495367 | 166 3.6 | 166 5 13 18 | 157 160 164 166 169 173 175
16495367 | 166 4.2 | 167 5 13 25 | 153 160 164 167 169 173 178
16777216 | 167 3.9 | 167 5 13 23 | 157 160 164 167 169 173 180
16777216 | 167 4.0 | 166 5 13 22 | 158 161 164 166 169 174 180
16777216 | 167 4.2 | 167 6 15 25 | 157 159 164 167 170 174 182

A.2.2 Leaf Size Data

66 | 4 2.1 | 5 4 6 7 | 0 1 2 5 6 7 7
66 | 65 0.0 | 65 0 0 0 | 65 65 65 65 65 65 65

62

72 | 5 2.7 | 4 6 8 8 | 1 1 2 4 8 9 9
72 | 5 2.8 | 5 6 8 9 | 0 1 3 5 9 9 9
77 | 5 2.3 | 4 3 7 9 | 0 2 3 4 6 9 9
77 | 5 2.2 | 5 3 7 9 | 0 2 3 5 6 9 9
79 | 5 2.7 | 5 4 9 10 | 0 1 4 5 8 10 10
79 | 5 2.9 | 3 6 8 8 | 2 2 3 3 9 10 10
90 | 6 2.7 | 5 4 9 10 | 1 2 3 5 7 11 11
90 | 6 2.4 | 6 2 7 10 | 0 3 4 6 6 10 10
94 | 6 2.3 | 6 4 7 8 | 2 3 3 6 7 10 10
94 | 5 1.3 | 5 2 4 4 | 3 3 4 5 6 7 7
98 | 7 3.3 | 6 2 11 11 | 2 2 5 6 7 13 13
98 | 6 2.6 | 6 4 8 10 | 1 3 4 6 8 11 11
100 | 6 2.4 | 5 4 7 9 | 1 3 5 5 9 10 10
100 | 6 2.7 | 6 5 7 8 | 2 3 4 6 9 10 10
107 | 7 3.6 | 6 6 11 11 | 3 3 5 6 11 14 14
107 | 6 1.8 | 7 3 6 8 | 1 3 5 7 8 9 9
114 | 7 2.4 | 8 3 8 9 | 1 2 6 8 9 10 10
114 | 7 2.5 | 8 2 8 8 | 2 2 7 8 9 10 10
116 | 7 2.2 | 7 4 8 9 | 2 3 5 7 9 11 11
116 | 7 2.1 | 8 2 7 9 | 1 3 6 8 8 10 10
140 | 9 2.7 | 9 5 7 8 | 4 5 6 9 11 12 12
140 | 9 3.5 | 8 5 12 12 | 4 4 6 8 11 16 16
151 | 9 2.1 | 10 3 7 10 | 2 5 7 10 10 12 12
151 | 9 2.7 | 9 2 10 11 | 3 4 9 9 11 14 14
157 | 10 2.6 | 9 4 8 9 | 4 5 8 9 12 13 13
157 | 9 1.8 | 10 3 6 7 | 4 5 8 10 11 11 11
174 | 11 2.8 | 11 5 9 12 | 4 7 8 11 13 16 16
174 | 12 4.5 | 12 5 14 18 | 2 6 9 12 14 20 20
185 | 11 1.6 | 11 3 5 5 | 8 8 9 11 12 13 13
185 | 11 2.6 | 10 3 9 10 | 6 7 10 10 13 16 16
193 | 12 3.7 | 11 7 11 12 | 6 7 10 11 17 18 18
193 | 12 3.0 | 11 5 10 10 | 6 6 10 11 15 16 16
216 | 13 3.5 | 14 6 11 11 | 8 8 11 14 17 19 19
216 | 14 3.9 | 12 6 14 15 | 6 7 11 12 17 21 21
239 | 15 4.1 | 15 6 16 16 | 7 7 12 15 18 23 23
239 | 15 3.4 | 14 6 10 11 | 8 9 13 14 19 19 19
239 | 15 4.0 | 15 6 13 14 | 9 10 12 15 18 23 23
239 | 15 3.7 | 15 6 13 13 | 8 8 12 15 18 21 21
256 | 16 3.3 | 17 5 9 11 | 10 12 12 17 17 21 21
256 | 16 4.0 | 15 8 12 13 | 10 11 13 15 21 23 23
256 | 16 3.2 | 16 3 12 13 | 8 9 14 16 17 21 21
256 | 16 3.5 | 17 5 12 13 | 8 9 13 17 18 21 21
256 | 16 4.5 | 16 7 17 17 | 7 7 13 16 20 24 24
270 | 16 2.8 | 17 5 9 10 | 10 11 14 17 19 20 20
270 | 17 3.9 | 17 7 12 15 | 8 11 14 17 21 23 23
283 | 18 5.3 | 17 9 18 18 | 8 8 14 17 23 26 26
283 | 17 3.3 | 18 4 10 13 | 9 12 16 18 20 22 22
289 | 18 3.8 | 19 6 12 13 | 9 10 15 19 21 22 22
289 | 18 3.9 | 18 5 13 15 | 11 13 15 18 20 26 26
306 | 19 4.3 | 18 5 15 16 | 12 13 17 18 22 28 28
306 | 19 3.3 | 18 4 12 14 | 11 13 17 18 21 25 25
325 | 20 3.4 | 21 5 10 11 | 13 14 18 21 23 24 24
325 | 20 4.1 | 19 5 14 16 | 12 14 18 19 23 28 28
327 | 18 5.7 | 20 5 23 24 | 0 1 16 20 21 24 24

63

327 | 20 4.0 | 21 6 14 14 | 13 13 17 21 23 27 27
346 | 22 4.4 | 22 5 15 16 | 14 15 19 22 24 30 30
346 | 21 4.2 | 22 6 14 15 | 13 14 19 22 25 28 28
348 | 20 5.9 | 21 4 24 27 | 0 3 18 21 22 27 27
348 | 22 4.1 | 22 5 14 16 | 12 14 19 22 24 28 28
356 | 19 7.7 | 20 9 29 30 | 0 1 17 20 26 30 30
356 | 22 4.8 | 21 6 17 18 | 15 16 19 21 25 33 33
405 | 22 6.8 | 23 5 26 28 | 0 2 21 23 26 28 28
405 | 23 9.4 | 24 7 38 39 | 0 1 21 24 28 39 39
413 | 25 3.8 | 24 5 12 12 | 21 21 22 24 27 33 33
413 | 24 8.2 | 26 5 35 36 | 0 1 24 26 29 36 36
421 | 20 10.7 | 22 9 35 35 | 0 0 17 22 26 35 35
421 | 27 5.9 | 26 9 19 27 | 11 19 23 26 32 38 38
465 | 22 10.7 | 24 6 36 37 | 0 1 21 24 27 37 37
465 | 27 8.1 | 28 7 31 33 | 0 2 25 28 32 33 33
492 | 28 8.2 | 29 6 35 37 | 0 2 26 29 32 37 37
492 | 28 8.8 | 28 7 36 38 | 0 2 25 28 32 38 38
512 | 30 8.8 | 34 12 35 38 | 0 3 25 34 37 38 38
512 | 29 9.5 | 31 7 42 45 | 0 3 27 31 34 45 45
532 | 34 6.6 | 33 9 23 23 | 22 22 30 33 39 45 45
532 | 28 11.5 | 31 5 41 42 | 0 1 28 31 33 42 42
540 | 29 10.2 | 32 7 37 39 | 0 2 29 32 36 39 39
540 | 28 10.7 | 31 9 38 40 | 0 2 27 31 36 40 40
542 | 25 14.3 | 33 31 40 41 | 0 1 3 33 34 41 41
542 | 31 8.6 | 32 5 39 44 | 0 5 29 32 34 44 44
550 | 32 9.7 | 32 9 42 44 | 0 2 29 32 38 44 44
550 | 28 12.0 | 34 7 35 36 | 0 1 29 34 36 36 36
571 | 26 15.1 | 32 15 43 44 | 0 1 23 32 38 44 44
571 | 30 13.0 | 35 11 45 47 | 0 2 26 35 37 47 47
589 | 28 14.7 | 34 10 42 43 | 0 1 27 34 37 43 43
589 | 33 12.1 | 33 9 48 49 | 1 2 30 33 39 50 50
611 | 31 14.2 | 35 13 47 49 | 0 2 28 35 41 49 49
611 | 26 16.6 | 34 35 42 43 | 0 1 3 34 38 43 43
612 | 25 17.1 | 34 37 45 46 | 0 1 3 34 40 46 46
612 | 25 17.3 | 33 36 43 44 | 0 1 3 33 39 44 44
613 | 29 16.2 | 36 15 52 53 | 0 1 23 36 38 53 53
613 | 33 13.4 | 37 10 45 46 | 0 1 31 37 41 46 46
645 | 30 17.4 | 36 37 52 53 | 0 1 5 36 42 53 53
645 | 24 17.4 | 28 36 45 46 | 0 1 3 28 39 46 46
657 | 30 17.7 | 37 39 48 49 | 0 1 5 37 44 49 49
657 | 26 17.1 | 37 35 44 45 | 0 1 4 37 39 45 45
709 | 26 18.9 | 36 41 47 48 | 0 1 3 36 44 48 48
709 | 26 20.3 | 41 41 50 51 | 0 1 3 41 44 51 51
897 | 26 24.6 | 6 50 60 61 | 0 1 3 6 53 61 61
897 | 17 21.1 | 5 40 60 61 | 0 1 3 5 43 61 61
922 | 27 26.8 | 6 53 63 64 | 0 1 3 6 56 64 64
922 | 17 23.4 | 5 7 63 64 | 0 1 3 5 10 64 64
990 | 17 23.9 | 5 5 70 71 | 0 1 3 5 8 71 71
990 | 14 21.9 | 4 4 64 66 | 0 1 3 4 7 65 66

1024 | 26 26.3 | 7 51 67 69 | 0 2 4 7 55 69 69
1024 | 9 15.7 | 4 3 57 58 | 0 1 3 4 6 58 58
1024 | 20 25.4 | 5 47 65 66 | 0 1 3 5 50 66 66
1039 | 14 20.8 | 4 4 60 61 | 0 1 3 4 7 61 61
1039 | 25 27.2 | 5 53 60 70 | 1 2 3 5 56 62 71

64

1062 | 24 28.6 | 5 61 67 69 | 0 1 4 5 65 68 69
1062 | 15 21.4 | 5 5 59 60 | 0 1 3 5 8 60 60
1269 | 9 14.7 | 5 4 63 65 | 0 2 3 5 7 65 65
1269 | 14 25.4 | 5 5 89 90 | 0 1 3 5 8 90 90
1400 | 8 12.8 | 5 3 10 78 | 0 2 4 5 7 12 78
1400 | 11 19.5 | 5 3 81 83 | 0 2 4 5 7 83 83
1409 | 10 19.3 | 5 3 85 87 | 0 2 4 5 7 87 87
1409 | 9 17.1 | 5 3 77 80 | 0 3 4 5 7 80 80
1544 | 15 26.3 | 6 4 94 95 | 1 2 4 6 8 96 96
1544 | 6 2.7 | 6 3 9 14 | 0 2 4 6 7 11 14
1597 | 11 20.5 | 6 3 90 92 | 1 3 5 6 8 93 93
1597 | 6 2.3 | 6 3 6 11 | 1 3 5 6 8 9 12
1638 | 12 23.8 | 6 5 98 101 | 0 3 4 6 9 101 101
1638 | 7 2.4 | 6 3 9 15 | 1 3 5 6 8 12 16
1695 | 7 2.4 | 6 3 8 12 | 1 3 5 6 8 11 13
1695 | 7 2.9 | 6 3 10 14 | 1 2 5 6 8 12 15
1787 | 7 2.9 | 7 4 9 13 | 1 3 5 7 9 12 14
1787 | 7 2.4 | 7 4 8 10 | 2 3 5 7 9 11 12
1795 | 7 2.8 | 7 4 9 15 | 0 3 5 7 9 12 15
1795 | 7 3.0 | 7 4 10 14 | 1 2 5 7 9 12 15
1871 | 7 2.6 | 7 4 8 15 | 1 3 5 7 9 11 16
1871 | 7 2.5 | 7 3 8 14 | 1 3 6 7 9 11 15
1947 | 8 2.7 | 7 3 9 13 | 3 4 6 7 9 13 16
1947 | 15 27.9 | 7 4 116 118 | 1 3 6 7 10 119 119
2016 | 7 2.5 | 7 3 9 13 | 2 4 6 7 9 13 15
2016 | 8 2.7 | 8 4 9 14 | 2 4 6 8 10 13 16
2061 | 8 3.1 | 8 4 11 16 | 1 3 6 8 10 14 17
2061 | 8 2.5 | 8 4 8 16 | 2 4 6 8 10 12 18
2397 | 10 3.2 | 10 5 11 17 | 2 5 7 10 12 16 19
2397 | 9 3.3 | 9 5 11 18 | 1 4 7 9 12 15 19
2403 | 9 3.1 | 9 4 10 19 | 1 5 7 9 11 15 20
2403 | 9 3.1 | 9 5 10 16 | 1 5 7 9 12 15 17
2555 | 10 2.7 | 10 4 9 12 | 4 5 8 10 12 14 16
2555 | 10 2.9 | 10 4 10 16 | 1 6 8 10 12 16 17
2760 | 11 3.1 | 11 5 10 14 | 4 6 8 11 13 16 18
2760 | 11 3.7 | 10 6 12 19 | 3 5 8 10 14 17 22
2790 | 11 3.4 | 11 4 11 18 | 2 5 9 11 13 16 20
2790 | 11 3.3 | 11 4 10 19 | 2 6 9 11 13 16 21
2825 | 11 3.1 | 11 4 10 15 | 4 6 9 11 13 16 19
2825 | 11 2.8 | 11 4 10 15 | 3 6 9 11 13 16 18
2971 | 12 3.4 | 12 5 12 17 | 3 6 9 12 14 18 20
2971 | 12 3.3 | 11 5 12 14 | 5 6 9 11 14 18 19
2996 | 12 3.8 | 12 5 12 20 | 2 6 9 12 14 18 22
2996 | 12 3.5 | 12 4 12 19 | 4 6 10 12 14 18 23
3096 | 12 3.6 | 11 6 12 15 | 4 6 9 11 15 18 19
3096 | 12 3.6 | 12 4 11 19 | 4 7 10 12 14 18 23
3224 | 12 3.4 | 12 5 11 17 | 5 7 10 12 15 18 22
3224 | 12 3.4 | 12 5 12 19 | 3 7 10 12 15 19 22
3878 | 15 4.1 | 15 6 13 20 | 5 9 12 15 18 22 25
3878 | 15 3.7 | 15 4 14 17 | 7 9 13 15 17 23 24
4096 | 16 3.9 | 16 6 12 21 | 4 10 13 16 19 22 25
4096 | 16 3.9 | 16 5 13 21 | 5 9 13 16 18 22 26
4096 | 16 3.8 | 16 6 11 21 | 6 11 13 16 19 22 27
4602 | 18 4.1 | 18 5 14 23 | 8 11 16 18 21 25 31

65

4602 | 18 4.4 | 18 6 14 26 | 6 11 15 18 21 25 32
4967 | 20 4.2 | 20 5 14 21 | 9 13 17 20 22 27 30
4967 | 19 4.9 | 18 6 16 34 | 0 11 16 18 22 27 34
5000 | 20 4.5 | 19 6 15 21 | 9 12 17 19 23 27 30
5000 | 19 3.9 | 19 6 12 20 | 9 13 16 19 22 25 29
5130 | 21 4.7 | 21 7 16 22 | 9 12 18 21 25 28 31
5130 | 20 5.0 | 20 6 19 24 | 9 12 17 20 23 31 33
5156 | 20 4.7 | 20 8 14 31 | 1 13 16 20 24 27 32
5156 | 20 5.2 | 20 6 16 33 | 0 12 17 20 23 28 33
5161 | 20 5.2 | 20 6 17 31 | 1 13 17 20 23 30 32
5161 | 20 4.8 | 19 6 16 34 | 1 13 17 19 23 29 35
5375 | 21 5.0 | 21 7 16 23 | 10 13 18 21 25 29 33
5375 | 21 4.7 | 21 6 16 26 | 8 13 18 21 24 29 34
5402 | 21 5.1 | 21 7 16 33 | 0 13 17 21 24 29 33
5402 | 21 4.8 | 20 5 14 34 | 0 13 18 20 23 27 34
5454 | 21 4.8 | 21 7 16 38 | 1 14 18 21 25 30 39
5454 | 20 5.9 | 21 5 19 39 | 0 10 18 21 23 29 39
6545 | 25 7.1 | 26 7 23 38 | 0 12 21 26 28 35 38
6545 | 24 6.7 | 25 7 20 37 | 0 14 21 25 28 34 37
6752 | 25 6.8 | 26 8 18 39 | 1 17 22 26 30 35 40
6752 | 26 6.8 | 27 8 20 40 | 1 16 23 27 31 36 41
6800 | 25 7.9 | 26 7 34 44 | 0 3 23 26 30 37 44
6800 | 26 6.5 | 26 6 18 37 | 1 16 23 26 29 34 38
7144 | 26 8.1 | 27 8 34 42 | 0 2 23 27 31 36 42
7144 | 26 6.8 | 27 7 19 43 | 0 17 23 27 30 36 43
7173 | 26 7.9 | 27 7 34 46 | 0 2 23 27 30 36 46
7173 | 27 7.0 | 28 8 21 41 | 1 17 24 28 32 38 42
7290 | 27 8.2 | 28 9 33 41 | 1 4 23 28 32 37 42
7290 | 26 7.9 | 28 9 33 39 | 0 3 23 28 32 36 39
7866 | 29 9.2 | 29 9 39 46 | 0 2 25 29 34 41 46
7866 | 29 9.8 | 30 8 38 47 | 0 2 26 30 34 40 47
8175 | 28 10.6 | 29 8 40 43 | 0 2 26 29 34 42 43
8175 | 28 10.6 | 30 9 39 44 | 0 2 26 30 35 41 44
8668 | 28 12.6 | 31 9 41 49 | 0 1 27 31 36 42 49
8668 | 29 12.0 | 33 9 39 46 | 0 2 28 33 37 41 46
9238 | 28 13.9 | 33 10 44 48 | 0 1 27 33 37 45 48
9238 | 27 14.3 | 32 13 41 45 | 0 1 23 32 36 42 45
10525 | 31 17.0 | 39 22 46 54 | 0 1 21 39 43 47 54
10525 | 27 18.3 | 35 37 49 53 | 0 1 4 35 41 50 53
10540 | 28 17.4 | 36 36 48 53 | 0 1 5 36 41 49 53
10540 | 29 18.3 | 37 39 50 57 | 0 1 4 37 43 51 57
12535 | 25 22.4 | 36 43 52 61 | 0 1 3 36 46 53 61
12535 | 20 21.3 | 5 41 52 59 | 0 1 2 5 43 53 59
12969 | 22 22.5 | 5 43 55 64 | 0 1 3 5 46 56 64
12969 | 23 22.8 | 6 43 56 65 | 0 1 3 6 46 57 65
14133 | 23 24.4 | 5 46 61 83 | 0 1 3 5 49 62 83
14133 | 25 24.7 | 6 48 59 67 | 0 1 3 6 51 60 67
15298 | 22 26.4 | 5 51 65 76 | 0 1 3 5 54 66 76
15298 | 17 23.5 | 4 6 62 68 | 0 1 3 4 9 63 68
15464 | 20 24.8 | 5 49 62 71 | 0 1 3 5 52 63 71
15464 | 18 23.7 | 5 42 61 78 | 0 1 3 5 45 62 78
15768 | 21 25.7 | 5 49 64 74 | 0 1 3 5 52 65 74
15768 | 17 23.4 | 4 40 61 69 | 0 1 3 4 43 62 69
16384 | 16 23.7 | 5 5 64 79 | 0 1 3 5 8 65 79

66

16384 | 19 25.0 | 5 47 64 77 | 0 1 3 5 50 65 77
16384 | 19 25.5 | 5 45 66 80 | 0 1 3 5 48 67 80
17684 | 18 25.7 | 5 4 71 86 | 0 1 4 5 8 72 86
17684 | 14 22.8 | 5 4 70 83 | 0 1 3 5 7 71 83
19226 | 9 16.7 | 5 3 60 78 | 0 2 3 5 6 62 78
19226 | 14 23.2 | 5 4 70 83 | 1 2 3 5 7 72 84
20849 | 10 17.7 | 5 3 66 85 | 0 2 4 5 7 68 85
20849 | 11 19.9 | 5 3 72 98 | 0 2 4 5 7 74 98
21442 | 10 18.5 | 5 3 74 97 | 0 2 4 5 7 76 97
21442 | 10 18.6 | 5 4 71 87 | 0 2 3 5 7 73 87
22342 | 9 16.1 | 6 3 15 86 | 0 2 4 6 7 17 86
22342 | 9 17.1 | 5 3 65 95 | 1 2 4 5 7 67 96
23202 | 8 15.1 | 6 3 9 100 | 0 2 4 6 7 11 100
23202 | 9 15.5 | 6 3 11 91 | 1 2 4 6 7 13 92
24436 | 9 15.9 | 6 4 9 92 | 1 2 4 6 8 11 93
24436 | 8 12.4 | 6 4 9 88 | 1 2 4 6 8 11 89
25278 | 8 11.9 | 6 4 9 97 | 0 2 4 6 8 11 97
25278 | 11 19.7 | 6 3 76 108 | 1 2 5 6 8 78 109
26466 | 8 10.7 | 7 3 8 105 | 0 3 5 7 8 11 105
26466 | 10 16.6 | 6 3 10 103 | 2 3 5 6 8 13 105
26496 | 7 10.1 | 6 3 8 111 | 0 3 5 6 8 11 111
26496 | 8 11.7 | 6 3 8 104 | 1 3 5 6 8 11 105
26894 | 10 17.3 | 7 4 10 114 | 1 2 5 7 9 12 115
26894 | 8 12.2 | 6 3 9 107 | 1 3 5 6 8 12 108
27865 | 8 10.1 | 7 3 9 116 | 1 3 5 7 8 12 117
27865 | 8 11.1 | 6 4 8 118 | 1 3 5 6 9 11 119
28676 | 8 10.4 | 7 4 11 103 | 1 2 5 7 9 13 104
28676 | 8 8.5 | 7 4 9 108 | 1 3 5 7 9 12 109
28823 | 8 10.4 | 7 4 8 107 | 1 3 5 7 9 11 108
28823 | 8 11.5 | 7 4 9 117 | 1 4 5 7 9 13 118
33146 | 11 18.8 | 8 4 9 150 | 1 4 6 8 10 13 151
33146 | 9 6.5 | 8 4 9 99 | 2 4 6 8 10 13 101
33494 | 9 8.2 | 8 4 9 129 | 2 4 6 8 10 13 131
33494 | 8 2.8 | 8 4 8 17 | 1 4 6 8 10 12 18
33855 | 8 3.0 | 8 4 10 18 | 0 4 6 8 10 14 18
33855 | 10 13.1 | 8 3 10 146 | 1 4 7 8 10 14 147
37192 | 9 3.1 | 9 4 10 17 | 2 4 7 9 11 14 19
37192 | 10 3.1 | 9 5 10 18 | 1 5 7 9 12 15 19
38763 | 9 2.7 | 9 4 9 15 | 3 5 7 9 11 14 18
38763 | 10 8.6 | 9 4 11 136 | 2 4 7 9 11 15 138
38908 | 10 3.1 | 10 5 10 15 | 3 5 7 10 12 15 18
38908 | 10 3.1 | 9 5 10 16 | 1 5 7 9 12 15 17
40188 | 11 13.1 | 10 4 12 152 | 2 5 8 10 12 17 154
40188 | 10 3.0 | 9 5 10 15 | 3 5 7 9 12 15 18
41640 | 11 3.1 | 10 3 11 18 | 2 5 9 10 12 16 20
41640 | 10 3.2 | 10 4 10 19 | 3 6 8 10 12 16 22
43155 | 11 3.2 | 11 4 11 19 | 1 6 9 11 13 17 20
43155 | 11 3.2 | 11 4 10 17 | 3 6 9 11 13 16 20
44845 | 11 3.4 | 11 5 11 17 | 3 6 9 11 14 17 20
44845 | 11 3.3 | 11 4 11 19 | 3 6 9 11 13 17 22
46825 | 12 3.4 | 11 5 11 18 | 4 6 9 11 14 17 22
46825 | 11 3.4 | 11 5 11 18 | 4 6 9 11 14 17 22
50226 | 12 3.4 | 12 4 11 20 | 3 7 10 12 14 18 23
50226 | 12 3.9 | 13 5 12 23 | 2 6 10 13 15 18 25

67

62700 | 15 4.0 | 15 5 13 22 | 2 9 13 15 18 22 24
62700 | 15 3.9 | 15 6 13 20 | 6 8 12 15 18 21 26
64497 | 16 4.4 | 16 5 14 27 | 4 10 13 16 18 24 31
64497 | 16 3.8 | 16 5 13 19 | 7 9 13 16 18 22 26
65536 | 16 3.8 | 16 6 13 19 | 7 9 13 16 19 22 26
65536 | 16 4.0 | 16 6 14 24 | 3 9 13 16 19 23 27
65536 | 16 4.0 | 16 6 13 23 | 7 10 13 16 19 23 30
67433 | 17 4.0 | 17 5 14 24 | 7 10 14 17 19 24 31
67433 | 16 4.1 | 16 6 13 24 | 6 10 13 16 19 23 30
78442 | 19 4.4 | 19 5 14 33 | 0 13 17 19 22 27 33
78442 | 18 4.6 | 18 6 14 30 | 1 11 15 18 21 25 31
81254 | 19 5.0 | 19 5 15 42 | 0 12 17 19 22 27 42
81254 | 20 4.6 | 20 6 15 26 | 10 12 17 20 23 27 36
88955 | 21 4.8 | 21 6 16 32 | 1 13 18 21 24 29 33
88955 | 22 5.0 | 22 6 16 35 | 1 14 19 22 25 30 36
92905 | 22 5.3 | 23 7 17 35 | 0 14 19 23 26 31 35
92905 | 22 5.4 | 23 7 17 33 | 0 14 19 23 26 31 33
93623 | 23 4.4 | 23 6 14 34 | 0 16 20 23 26 30 34
93623 | 23 5.7 | 22 7 16 38 | 0 15 20 22 27 31 38
94561 | 23 6.2 | 23 6 19 41 | 0 13 20 23 26 32 41
94561 | 22 5.3 | 23 7 15 35 | 0 15 19 23 26 30 35
95372 | 23 5.4 | 24 7 16 36 | 1 15 20 24 27 31 37
95372 | 22 5.9 | 23 6 17 33 | 0 14 20 23 26 31 33
99160 | 24 6.1 | 24 6 18 44 | 0 15 21 24 27 33 44
99160 | 23 6.5 | 23 8 18 40 | 0 14 20 23 28 32 40
101225 | 24 5.9 | 24 6 16 43 | 0 16 21 24 27 32 43
101225 | 24 6.1 | 25 6 18 40 | 0 16 22 25 28 34 40
101559 | 24 6.8 | 25 6 22 40 | 0 11 22 25 28 33 40
101559 | 24 6.5 | 25 7 18 40 | 0 16 21 25 28 34 40
105691 | 25 6.1 | 25 8 17 36 | 1 17 21 25 29 34 37
105691 | 25 6.0 | 26 6 18 42 | 0 17 22 26 28 35 42
110967 | 25 7.8 | 26 7 33 40 | 0 2 22 26 29 35 40
110967 | 26 6.5 | 27 6 17 44 | 1 18 24 27 30 35 45
111404 | 26 7.5 | 27 7 31 40 | 1 4 23 27 30 35 41
111404 | 25 6.9 | 26 6 23 38 | 0 11 23 26 29 34 38
114879 | 26 8.0 | 28 7 34 44 | 1 3 24 28 31 37 45
114879 | 27 7.1 | 28 7 21 45 | 0 15 24 28 31 36 45
129414 | 29 9.8 | 30 8 38 52 | 0 2 26 30 34 40 52
129414 | 28 10.1 | 30 8 38 48 | 0 2 26 30 34 40 48
132549 | 29 10.8 | 31 9 39 50 | 0 2 26 31 35 41 50
132549 | 29 9.9 | 31 7 38 48 | 0 2 27 31 34 40 48
135777 | 28 11.5 | 31 10 41 47 | 0 2 26 31 36 43 47
135777 | 28 11.9 | 31 9 40 49 | 0 1 26 31 35 41 49
137216 | 29 12.0 | 32 9 42 47 | 0 1 27 32 36 43 47
137216 | 28 12.6 | 32 9 41 51 | 0 1 27 32 36 42 51
139718 | 28 12.4 | 32 9 41 49 | 0 1 27 32 36 42 49
139718 | 28 12.8 | 32 9 40 50 | 0 1 27 32 36 41 50
149844 | 29 14.8 | 34 12 45 52 | 0 1 26 34 38 46 52
149844 | 29 14.7 | 35 12 44 49 | 0 1 27 35 39 45 49
155579 | 30 14.2 | 36 12 43 56 | 0 2 28 36 40 45 56
155579 | 30 15.2 | 35 11 46 59 | 0 1 28 35 39 47 59
168788 | 29 17.5 | 37 37 48 57 | 0 1 5 37 42 49 57
168788 | 31 17.5 | 37 37 49 62 | 0 1 6 37 43 50 62
180324 | 28 19.8 | 37 40 51 57 | 0 1 4 37 44 52 57

68

180324 | 27 19.6 | 36 40 50 59 | 0 1 4 36 44 51 59
182842 | 25 20.4 | 37 41 49 59 | 0 1 3 37 44 50 59
182842 | 24 20.0 | 33 41 48 56 | 0 1 2 33 43 49 56
186034 | 25 20.7 | 34 40 52 59 | 0 1 3 34 43 53 59
186034 | 28 20.3 | 38 42 50 62 | 0 1 3 38 45 51 62
187594 | 28 20.3 | 37 42 51 59 | 0 1 3 37 45 52 59
187594 | 25 21.3 | 34 41 53 65 | 0 1 3 34 44 54 65
193543 | 26 21.8 | 37 44 53 63 | 0 1 3 37 47 54 63
193543 | 24 22.1 | 7 43 54 63 | 0 1 3 7 46 55 63
211998 | 25 23.6 | 6 45 58 76 | 0 1 3 6 48 59 76
211998 | 24 23.3 | 6 45 56 67 | 0 1 3 6 48 57 67
212668 | 22 23.7 | 5 45 57 64 | 0 1 3 5 48 58 64
212668 | 25 23.5 | 8 46 57 69 | 0 1 3 8 49 58 69
220475 | 19 22.8 | 5 43 57 66 | 0 1 3 5 46 58 66
220475 | 21 23.6 | 5 45 58 67 | 0 1 3 5 48 59 67
223090 | 21 23.9 | 5 47 58 69 | 0 1 3 5 50 59 69
223090 | 23 24.3 | 5 47 60 65 | 0 1 3 5 50 61 65
227163 | 22 24.0 | 5 46 60 71 | 0 1 3 5 49 61 71
227163 | 19 23.4 | 4 47 58 72 | 0 1 2 4 49 59 72
234239 | 21 25.2 | 5 48 61 85 | 0 1 3 5 51 62 85
234239 | 24 25.3 | 6 49 63 74 | 0 1 3 6 52 64 74
248714 | 21 25.6 | 5 48 65 74 | 0 1 3 5 51 66 74
248714 | 22 25.9 | 5 51 63 75 | 0 1 3 5 54 64 75
252247 | 18 24.7 | 5 44 66 79 | 0 1 3 5 47 67 79
252247 | 21 26.1 | 5 50 68 79 | 0 1 3 5 53 69 79
256849 | 20 25.7 | 5 48 66 79 | 0 1 3 5 51 67 79
256849 | 16 23.3 | 5 4 64 75 | 0 1 3 5 7 65 75
257794 | 18 23.9 | 5 45 64 70 | 0 1 3 5 48 65 70
257794 | 17 24.0 | 4 5 65 75 | 0 1 3 4 8 66 75
262144 | 16 23.1 | 5 5 62 75 | 0 2 3 5 8 64 75
262144 | 17 24.6 | 5 6 67 81 | 0 1 3 5 9 68 81
262144 | 15 22.7 | 4 4 65 79 | 1 1 3 4 7 66 80
282691 | 17 24.6 | 5 5 68 83 | 0 1 3 5 8 69 83
282691 | 14 23.1 | 5 4 72 80 | 0 1 3 5 7 73 80
292185 | 15 24.0 | 5 4 71 93 | 0 1 3 5 7 72 93
292185 | 17 25.5 | 5 5 71 83 | 0 2 3 5 8 73 83
327699 | 14 23.2 | 6 4 75 100 | 0 1 4 6 8 76 100
327699 | 10 18.7 | 5 4 70 84 | 0 2 3 5 7 72 84
333128 | 9 17.6 | 5 4 67 103 | 0 2 3 5 7 69 103
333128 | 10 18.3 | 5 3 72 95 | 0 2 4 5 7 74 95
370321 | 10 18.1 | 6 4 56 106 | 1 2 4 6 8 58 107
370321 | 12 22.5 | 6 4 84 99 | 0 2 4 6 8 86 99
376186 | 10 17.7 | 6 4 11 93 | 1 2 4 6 8 13 94
376186 | 10 17.4 | 6 3 71 93 | 1 2 4 6 7 73 94
376561 | 8 15.9 | 5 3 9 105 | 0 2 4 5 7 11 105
376561 | 9 16.8 | 6 3 10 95 | 0 3 4 6 7 13 95
396823 | 9 14.6 | 6 3 8 99 | 1 3 5 6 8 11 100
396823 | 9 15.3 | 6 3 9 105 | 1 3 5 6 8 12 106
414618 | 8 11.3 | 6 3 7 105 | 1 3 5 6 8 10 106
414618 | 8 11.3 | 6 3 9 106 | 1 2 5 6 8 11 107
415024 | 10 18.7 | 6 3 10 107 | 1 3 5 6 8 13 108
415024 | 9 15.5 | 6 4 10 116 | 0 2 5 6 9 12 116
456137 | 8 12.4 | 7 4 9 114 | 1 3 5 7 9 12 115
456137 | 9 14.6 | 7 4 9 117 | 1 3 5 7 9 12 118

69

464041 | 7 5.9 | 7 4 9 89 | 1 3 5 7 9 12 90
464041 | 9 10.8 | 7 3 10 106 | 2 3 6 7 9 13 108
489220 | 8 6.4 | 7 3 9 101 | 0 3 6 7 9 12 101
489220 | 8 6.5 | 7 3 9 100 | 2 3 6 7 9 12 102
522924 | 8 7.4 | 8 4 9 116 | 0 4 6 8 10 13 116
522924 | 8 7.6 | 8 4 10 119 | 2 3 6 8 10 13 121
526827 | 8 2.9 | 8 4 9 17 | 1 4 6 8 10 13 18
526827 | 10 12.1 | 8 4 10 132 | 2 4 6 8 10 14 134
556524 | 9 2.9 | 8 5 9 18 | 0 4 6 8 11 13 18
556524 | 9 8.3 | 9 4 10 131 | 2 4 7 9 11 14 133
594179 | 9 3.1 | 9 4 10 15 | 3 4 7 9 11 14 18
594179 | 9 3.1 | 9 4 10 17 | 2 4 7 9 11 14 19
601537 | 9 3.0 | 9 4 10 17 | 2 5 7 9 11 15 19
601537 | 9 3.1 | 9 4 10 16 | 2 4 7 9 11 14 18
623975 | 10 3.0 | 10 4 11 16 | 3 5 8 10 12 16 19
623975 | 10 8.4 | 9 4 9 134 | 1 5 7 9 11 14 135
633731 | 10 3.0 | 10 3 10 19 | 2 5 8 10 11 15 21
633731 | 10 3.0 | 9 4 10 16 | 2 5 7 9 11 15 18
650258 | 10 3.1 | 10 4 10 16 | 3 5 8 10 12 15 19
650258 | 10 3.2 | 10 4 10 21 | 2 5 8 10 12 15 23
675966 | 10 3.1 | 10 4 11 16 | 3 5 8 10 12 16 19
675966 | 10 3.2 | 10 5 11 18 | 2 5 8 10 13 16 20
711698 | 11 3.3 | 11 4 11 18 | 3 6 9 11 13 17 21
711698 | 11 3.2 | 11 5 10 15 | 3 6 8 11 13 16 18
815935 | 13 3.8 | 12 5 13 23 | 2 6 10 12 15 19 25
815935 | 12 3.3 | 12 5 11 17 | 4 7 10 12 15 18 21
878307 | 13 3.7 | 13 5 13 20 | 4 7 11 13 16 20 24
878307 | 13 3.5 | 13 5 12 18 | 4 8 11 13 16 20 22
986780 | 15 4.1 | 15 5 14 24 | 3 8 12 15 17 22 27
986780 | 15 3.7 | 15 5 13 25 | 0 9 13 15 18 22 25

1008012 | 15 4.0 | 15 6 12 22 | 5 9 12 15 18 21 27
1008012 | 15 3.9 | 15 5 13 22 | 6 9 13 15 18 22 28
1048576 | 16 3.9 | 16 6 13 19 | 8 10 13 16 19 23 27
1048576 | 16 3.8 | 16 5 13 22 | 7 10 13 16 18 23 29
1048576 | 16 4.1 | 15 5 14 22 | 6 9 13 15 18 23 28
1069151 | 16 3.9 | 16 5 12 33 | 0 10 14 16 19 22 33
1069151 | 16 4.2 | 16 6 13 25 | 1 9 13 16 19 22 26
1113665 | 17 3.9 | 17 5 13 21 | 8 11 14 17 19 24 29
1113665 | 17 4.1 | 17 6 14 28 | 1 10 14 17 20 24 29
1128563 | 17 3.9 | 17 5 12 25 | 3 11 14 17 19 23 28
1128563 | 17 4.3 | 17 6 15 21 | 7 10 14 17 20 25 28
1192316 | 18 4.2 | 18 6 13 25 | 7 11 15 18 21 24 32
1192316 | 18 4.3 | 18 6 14 29 | 1 11 15 18 21 25 30
1368818 | 21 4.8 | 21 5 15 31 | 0 13 18 21 23 28 31
1368818 | 21 4.6 | 21 7 15 22 | 10 14 17 21 24 29 32
1449558 | 22 4.7 | 22 6 15 33 | 2 15 19 22 25 30 35
1449558 | 22 5.1 | 22 7 17 35 | 2 14 19 22 26 31 37
1463861 | 22 5.2 | 22 6 16 34 | 0 14 19 22 25 30 34
1463861 | 22 4.7 | 22 7 15 35 | 0 15 19 22 26 30 35
1781937 | 25 8.2 | 26 8 33 41 | 0 3 22 26 30 36 41
1781937 | 25 7.6 | 26 7 31 41 | 0 4 23 26 30 35 41
1785742 | 26 7.4 | 27 7 21 52 | 0 14 23 27 30 35 52
1785742 | 25 7.2 | 26 8 24 43 | 0 11 22 26 30 35 43
1884161 | 26 9.5 | 28 8 35 42 | 0 2 24 28 32 37 42

70

1884161 | 27 8.0 | 28 7 34 44 | 0 3 24 28 31 37 44
2061614 | 29 9.3 | 31 8 38 43 | 0 2 26 31 34 40 43
2061614 | 29 9.0 | 31 8 36 48 | 1 3 26 31 34 39 49
2366039 | 31 12.2 | 34 8 42 51 | 0 1 30 34 38 43 51
2366039 | 28 14.8 | 33 13 44 58 | 0 1 25 33 38 45 58
2392176 | 29 14.1 | 34 11 43 50 | 0 1 27 34 38 44 50
2392176 | 27 15.6 | 33 33 44 51 | 0 1 5 33 38 45 51
2417864 | 28 15.4 | 34 14 45 52 | 0 1 24 34 38 46 52
2417864 | 30 13.6 | 34 10 45 53 | 0 1 29 34 39 46 53
2525166 | 29 15.5 | 35 15 45 51 | 0 1 24 35 39 46 51
2525166 | 29 16.0 | 35 20 45 56 | 0 1 19 35 39 46 56
2672788 | 27 18.0 | 35 37 47 61 | 0 1 4 35 41 48 61
2672788 | 28 18.0 | 37 37 47 57 | 0 1 4 37 41 48 57
2861570 | 29 19.2 | 38 39 50 60 | 0 1 4 38 43 51 60
2861570 | 29 18.8 | 39 40 48 56 | 0 1 4 39 44 49 56
2884139 | 25 20.0 | 35 39 50 64 | 0 1 3 35 42 51 64
2884139 | 28 19.8 | 38 41 51 56 | 0 1 4 38 45 52 56
3184126 | 25 22.1 | 34 43 54 61 | 0 1 3 34 46 55 61
3184126 | 26 22.5 | 37 45 54 65 | 0 1 3 37 48 55 65
3306465 | 25 22.9 | 7 45 55 65 | 0 1 3 7 48 56 65
3306465 | 27 23.0 | 41 45 56 67 | 0 1 3 41 48 57 67
3508605 | 21 24.2 | 5 46 58 73 | 0 1 3 5 49 59 73
3508605 | 24 23.8 | 6 46 59 65 | 0 1 3 6 49 60 65
3663174 | 23 24.6 | 5 47 61 69 | 0 1 3 5 50 62 69
3663174 | 22 24.5 | 5 47 61 71 | 0 1 3 5 50 62 71
3703674 | 23 24.9 | 5 48 61 69 | 0 1 3 5 51 62 69
3703674 | 21 24.2 | 4 46 60 71 | 0 1 3 4 49 61 71
3758810 | 25 25.6 | 6 48 62 76 | 0 1 3 6 51 63 76
3758810 | 21 24.4 | 5 48 61 72 | 0 1 3 5 51 62 72
3878401 | 19 24.8 | 5 48 64 76 | 0 1 3 5 51 65 76
3878401 | 19 24.4 | 5 48 61 67 | 0 1 3 5 51 62 67
3916543 | 20 25.2 | 5 49 63 73 | 0 1 3 5 52 64 73
3916543 | 21 25.8 | 5 48 66 77 | 0 1 3 5 51 67 77
4176245 | 16 23.6 | 5 5 65 77 | 0 1 3 5 8 66 77
4176245 | 15 22.4 | 4 4 63 73 | 0 1 3 4 7 64 73
4194304 | 15 23.1 | 4 4 66 75 | 0 1 3 4 7 67 75
4194304 | 16 23.1 | 4 5 63 86 | 0 1 3 4 8 64 86
4194304 | 17 23.8 | 5 6 64 74 | 0 1 3 5 9 65 74
4263816 | 14 21.8 | 5 4 63 81 | 0 1 3 5 7 64 81
4263816 | 14 21.9 | 5 4 64 77 | 0 1 3 5 7 65 77
4467515 | 16 24.1 | 5 5 69 78 | 0 1 3 5 8 70 78
4467515 | 16 24.5 | 5 4 69 86 | 0 1 3 5 7 70 86
4777900 | 12 20.6 | 5 3 68 90 | 0 1 3 5 6 69 90
4777900 | 15 24.1 | 5 3 71 87 | 0 2 4 5 7 73 87
4874035 | 11 19.6 | 5 3 70 82 | 0 2 4 5 7 72 82
4874035 | 15 23.7 | 5 3 71 88 | 0 2 4 5 7 73 88
5226162 | 12 20.3 | 5 3 69 89 | 0 2 4 5 7 71 89
5226162 | 13 21.5 | 6 3 74 88 | 1 2 4 6 7 76 89
5235935 | 11 19.4 | 5 3 71 90 | 0 2 4 5 7 73 90
5235935 | 10 18.9 | 5 3 72 92 | 0 2 4 5 7 74 92
5450827 | 11 20.4 | 5 3 71 98 | 0 2 4 5 7 73 98
5450827 | 11 19.9 | 5 3 74 89 | 0 2 4 5 7 76 89
5486221 | 9 16.1 | 5 3 63 94 | 1 2 4 5 7 65 95
5486221 | 11 20.8 | 5 3 75 97 | 0 2 4 5 7 77 97

71

5690571 | 11 19.0 | 6 4 72 98 | 0 2 4 6 8 74 98
5690571 | 10 18.6 | 5 3 74 93 | 0 2 4 5 7 76 93
5875079 | 10 18.4 | 6 4 11 107 | 0 2 4 6 8 13 107
5875079 | 10 17.1 | 6 4 61 100 | 0 2 4 6 8 63 100
5900945 | 8 14.8 | 5 3 9 93 | 1 2 4 5 7 11 94
5900945 | 9 16.9 | 6 3 10 106 | 1 2 4 6 7 12 107
5927368 | 10 18.7 | 5 4 74 106 | 0 2 4 5 8 76 106
5927368 | 10 17.3 | 5 4 64 94 | 0 2 4 5 8 66 94
6097084 | 9 16.8 | 6 3 9 110 | 0 2 4 6 7 11 110
6097084 | 10 17.3 | 6 4 12 102 | 0 2 4 6 8 14 102
6597011 | 7 10.2 | 6 4 9 105 | 1 2 4 6 8 11 106
6597011 | 8 13.6 | 6 3 8 101 | 1 3 5 6 8 11 102
6768571 | 9 15.7 | 7 3 9 105 | 1 3 5 7 8 12 106
6768571 | 8 12.1 | 6 4 9 96 | 1 3 4 6 8 12 97
6854107 | 9 13.1 | 7 4 10 107 | 1 3 5 7 9 13 108
6854107 | 9 16.2 | 7 3 10 114 | 1 2 5 7 8 12 115
6932837 | 10 16.6 | 7 4 10 119 | 1 3 5 7 9 13 120
6932837 | 9 15.2 | 6 3 10 113 | 1 2 5 6 8 12 114
7069638 | 7 9.2 | 6 4 8 112 | 0 3 5 6 9 11 112
7069638 | 10 17.6 | 7 3 12 112 | 1 3 5 7 8 15 113
7302069 | 9 15.1 | 7 4 9 120 | 1 3 5 7 9 12 121
7302069 | 8 10.7 | 7 3 9 114 | 2 3 6 7 9 12 116
7450186 | 8 11.5 | 7 4 9 117 | 1 3 5 7 9 12 118
7450186 | 9 15.0 | 7 4 9 120 | 2 3 5 7 9 12 122
8716744 | 9 3.0 | 8 5 10 18 | 0 4 6 8 11 14 18
8716744 | 9 7.8 | 8 3 9 124 | 1 4 7 8 10 13 125
9561827 | 9 3.1 | 9 4 11 18 | 1 4 7 9 11 15 19
9561827 | 9 3.1 | 9 4 11 17 | 2 5 7 9 11 16 19
9887400 | 10 9.5 | 9 4 11 150 | 2 4 7 9 11 15 152
9887400 | 10 11.6 | 9 5 11 142 | 3 5 7 9 12 16 145
9997495 | 9 3.1 | 9 4 10 17 | 1 4 7 9 11 14 18
9997495 | 10 3.1 | 10 4 10 16 | 2 5 8 10 12 15 18
12936965 | 12 3.7 | 12 5 12 19 | 4 7 10 12 15 19 23
12936965 | 13 3.8 | 12 5 13 19 | 4 6 10 12 15 19 23
12997436 | 12 3.6 | 12 5 11 20 | 4 7 10 12 15 18 24
12997436 | 12 3.7 | 12 6 12 21 | 3 7 9 12 15 19 24
13270592 | 12 3.6 | 12 5 12 19 | 3 7 10 12 15 19 22
13270592 | 13 3.4 | 13 5 12 16 | 6 7 10 13 15 19 22
13479768 | 13 3.4 | 13 4 11 20 | 2 8 11 13 15 19 22
13479768 | 13 3.4 | 12 5 11 18 | 5 8 10 12 15 19 23
13946417 | 13 3.4 | 13 5 11 19 | 7 8 11 13 16 19 26
13946417 | 13 3.5 | 13 5 11 19 | 4 8 11 13 16 19 23
14049511 | 13 3.8 | 13 5 12 23 | 3 8 11 13 16 20 26
14049511 | 13 3.8 | 13 5 13 24 | 0 7 11 13 16 20 24
15354841 | 14 3.6 | 14 4 12 20 | 7 9 12 14 16 21 27
15354841 | 14 3.8 | 15 5 12 23 | 2 9 12 15 17 21 25
16495367 | 15 3.6 | 15 5 13 18 | 6 9 13 15 18 22 24
16495367 | 15 4.2 | 16 5 14 26 | 1 8 13 16 18 22 27
16777216 | 16 3.9 | 16 5 13 23 | 6 9 13 16 18 22 29
16777216 | 16 4.0 | 15 5 13 22 | 7 10 13 15 18 23 29
16777216 | 16 4.3 | 16 6 15 31 | 0 8 13 16 19 23 31

72

A.3 Simulation Code

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <time.h>
#include <math.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/types.h>

#include <algorithm>
#include <string>
#include <vector>

using std::sort;
using std::string;
using std::vector;

struct RowInfo;

struct Id {
unsigned d;
unsigned operator[] (unsigned i) const {
unsigned shift = (8 - (i+1))*4;
return (d >> shift) & 0xF;

}
operator unsigned () const {return d;}
Id() {}
Id(unsigned d0) : d(d0) {}

};

static inline Id operator^ (Id x, Id y)
{

return Id(x.d ^ y.d);
}

struct Node {
Id id;
void add(Id);
int tally[8][16];
void init(Id);
void get_row_info(RowInfo &);

};

73

struct Network {
char filename[5+8+1+2+4+1];
unsigned network_size;
unsigned num_samples;
Node * samp;
// the first num_samples added will also be added to samp
void add(Id id);
void init(unsigned num_samples);
void write();
void read();
void clear() {network_size = 0; num_samples = 0; delete[] samp; samp = 0;}
Network() : samp(0) {}
~Network() {delete[] samp;}

};

void Network::init(unsigned num_samples0) {
delete[] samp;
network_size = 0;
num_samples = num_samples0;
samp = new Node[num_samples];

};

void Network::add(Id id)
{

if (network_size >= num_samples) {
for (unsigned i = 0; i < num_samples; ++i)

samp[i].add(id);
} else {
for (unsigned i = 0; i < network_size; ++i)

samp[i].add(id);
samp[network_size].init(id);
for (unsigned i = 0; i < network_size; ++i)

samp[network_size].add(samp[i].id);
}
++network_size;

}

void Network::write() {
int seq_num = 0;

loop:
int res = snprintf(filename, sizeof(filename), "samp/%08u-%u.dat",

network_size, seq_num);
assert (res < sizeof(filename));
if (access(filename, F_OK) == 0) {++seq_num; goto loop;}
FILE * f = fopen(filename, "wb");

fwrite(&network_size, sizeof(network_size), 1, f);

74

fwrite(&num_samples, sizeof(num_samples), 1, f);
fwrite(samp, sizeof(Node), num_samples, f);
fclose(f);

}

void Network::read() {
assert(filename[0]);
FILE * f = fopen(filename, "rb");
fread(&network_size, sizeof(network_size), 1, f);
fread(&num_samples, sizeof(num_samples), 1, f);
delete[] samp;
samp = new Node[num_samples];
fread(samp, sizeof(Node), num_samples, f);
fclose(f);

}

template <typename F>
void stats(unsigned n, const F & f, FILE * o)
{

double total = 0;
double total2 = 0;
unsigned sizes[n];
for (unsigned i = 0; i < n; ++i)
{
unsigned s = f(i);
sizes[i] = s;
total += s;
total2 += s*s;

}
sort(sizes, sizes + n);
fprintf(o,

"%3.0f %4.1f | %3u %3u %3u %3u | %3u %3u %3u %3u %3u %3u %3u\n",
total/n,
sqrt((total2 - total*total/n)/(n - 1)),
sizes[static_cast<int>(n*0.50)],
sizes[static_cast<int>(n*0.75)] - sizes[static_cast<int>(n*0.25)],
sizes[static_cast<int>(n*0.95)] - sizes[static_cast<int>(n*0.05)],
sizes[n-1] - sizes[0],
sizes[0],
sizes[static_cast<int>(n*0.05)],
sizes[static_cast<int>(n*0.25)],
sizes[static_cast<int>(n*0.50)],
sizes[static_cast<int>(n*0.75)],
sizes[static_cast<int>(n*0.95)],
sizes[n-1]);

}

75

template <typename F>
void dump(unsigned n, const F & f, const char * fn0, const char * suf)
{

char fn[strlen(fn0) - 4 + strlen(suf) + 1];
snprintf(fn, sizeof(fn), "%.*s%s", strlen(fn0) - 4, fn0, suf);
FILE * o = fopen(fn, "w");
for (unsigned i = 0; i < n; ++i)
{
unsigned s = f(i);
fprintf(o, "%u\n", s);

}
fclose(o);

}

struct RowInfo
{

struct {int lsize; int fsize; bool complete;} d[8];
int size;
int leaf_size;
int fsize;

};

struct GetSize {
const RowInfo * ri;
GetSize(const RowInfo * r) : ri(r) {}
unsigned operator() (unsigned i) const {return ri[i].size;}

};

struct GetFSize {
const RowInfo * ri;
GetFSize(const RowInfo * r) : ri(r) {}
unsigned operator() (unsigned i) const {return ri[i].fsize;}

};

struct GetLeafSize {
const RowInfo * ri;
GetLeafSize(const RowInfo * r) : ri(r) {}
unsigned operator() (unsigned i) const {return ri[i].leaf_size;}

};

void Node::init(Id id0)
{

id = id0;
for (int row = 0; row < 8; ++row)
for (int col = 0; col < 16; ++col)

tally[row][col] = 0;
}

76

void Node::add(Id to_add)
{

Id x = id ^ to_add;
if (x[0]) tally[0][to_add[0]]++;
else if (x[1]) tally[1][to_add[1]]++;
else if (x[2]) tally[2][to_add[2]]++;
else if (x[3]) tally[3][to_add[3]]++;
else if (x[4]) tally[4][to_add[4]]++;
else if (x[5]) tally[5][to_add[5]]++;
else if (x[6]) tally[6][to_add[6]]++;
else if (x[7]) tally[7][to_add[7]]++;

}

void Node::get_row_info(RowInfo & ri)
{

ri.size = 1;
ri.fsize = 1;
ri.leaf_size = 0;
bool in_leaf = false;
for (int row = 0; row < 8; ++row)
{
int filled_cols = 0;
ri.d[row].lsize = 0;
ri.d[row].fsize = 0;
for (int col = 0; col < 16; ++col) {

if (tally[row][col] > 0) filled_cols++;
ri.d[row].lsize += tally[row][col];
ri.d[row].fsize += tally[row][col] < 2 ? tally[row][col] : 2;

}
ri.d[row].complete = filled_cols == 15;
ri.size += ri.d[row].complete ? ri.d[row].fsize : ri.d[row].lsize;
ri.fsize += ri.d[row].fsize;
in_leaf = in_leaf || !ri.d[row].complete;
if (in_leaf) ri.leaf_size += ri.d[row].lsize;

}
}

void print(const Node & n, const RowInfo & ri)
{

printf("\n");
printf("Node: %x\n\n", (unsigned)n.id);
for (int row = 0; row < 8; ++row)
{
printf(" ");
for (unsigned col = 0; col < 16; ++col)
{

77

if (col == n.id[row]) printf("_ ");
else if (n.tally[row][col] >= 2) printf("2 ");
else if (n.tally[row][col] == 1) printf("1 ");
else printf(". ");

}
if (ri.d[row].complete) printf(" C");
printf("\n");

}
printf("\nLeaf Size: %d\n\n", ri.leaf_size);

}

static inline Id rand_id()
{

assert(INT_MAX == RAND_MAX);
unsigned res = rand();
return Id(res << 1);

}

void proc(int network_size, int num_samples)
{

if (num_samples > network_size) num_samples = network_size;

Network nw;
nw.init(num_samples);

for (int i = 0; i < network_size; ++i)
{
nw.add(rand_id());

}

nw.write();
printf("%d size\n", network_size);

}

void analyze()
{

Network nw;

DIR * dp;
struct dirent * ep;
dp = opendir("samp/");

FILE * o_size = fopen("nodes-size.txt", "w");
FILE * o_fsize = fopen("nodes-fsize.txt", "w");
FILE * o_lsize = fopen("nodes-lsize.txt", "w");

vector<string> data_files;

78

while (ep = readdir(dp), ep) {
unsigned s = strlen(ep->d_name);
if (s <= 4 || strncmp(ep->d_name + s - 4, ".dat", 4) != 0) continue;
data_files.push_back(ep->d_name);

}

sort(data_files.begin(), data_files.end());

vector<string>::const_iterator i = data_files.begin(), end = data_files.end();
for (; i != end; ++i) {
nw.clear();
snprintf(nw.filename, sizeof(nw.filename), "samp/%s", i->c_str());
nw.read();

RowInfo ri[nw.num_samples];

for (int i = 0; i < nw.num_samples; ++i)
{

nw.samp[i].get_row_info(ri[i]);
}

fprintf(o_size, "%8d | ", nw.network_size);
stats(nw.num_samples, GetSize(ri), o_size);
dump(nw.num_samples, GetSize(ri), nw.filename, "-size.txt");

fprintf(o_fsize, "%8d | ", nw.network_size);
stats(nw.num_samples, GetFSize(ri), o_fsize);
dump(nw.num_samples, GetFSize(ri), nw.filename, "-fsize.txt");

fprintf(o_lsize, "%8d | ", nw.network_size);
stats(nw.num_samples, GetLeafSize(ri), o_lsize);
dump(nw.num_samples, GetLeafSize(ri), nw.filename, "-lsize.txt");

}
closedir(dp);
fclose(o_size);
fclose(o_fsize);
fclose(o_lsize);

}

unsigned rand_exp(unsigned min0, unsigned max0) {
double min = log((double)min0);
double max = log((double)max0);
double r = rand();
r = r * (max - min)/RAND_MAX + min;

79

r = exp(r);
return static_cast<unsigned>(r);

}

int main(int argc, const char *argv[])
{

srand(time(0));

if (argc == 2 && strcmp(argv[1], "proc") == 0) {

unsigned max = 24;
for (unsigned p = 8; p <= max; p += 2) {

proc(1 << p, 256);
fflush(stdout);
proc(1 << p, 256);
fflush(stdout);
proc(1 << p, 256);
fflush(stdout);

}
for (unsigned i = 0; i < 256; ++i) {

unsigned r = rand_exp(64,1 << max);
proc(r, 256);
fflush(stdout);
proc(r, 256);
fflush(stdout);

}
return 0;

} else if (argc == 2 && strcmp(argv[1], "analyze") == 0) {

analyze();
return 0;

} else {

fprintf(stderr, "Usage: %s proc|analyze\n", argv[0]);
return 1;

}

}

Appendix B

Implementation Details

An implementation for DistribNet is available at http://distribnet.sourceforge.

net/.

B.1 Physical Storage

Blocks are currently stored in one of three ways:

1. block smaller than a fixed threshold (currently 1k) are stored using Berkeley DB

(version 3.3 or better).

2. blocks larger than the threshold are stored as files. The primary reason for doing this

is to avoid limiting the size of data store by the maximum size of a file which is often

2 or 4 GB on most 32-bit systems.

3. blocks are not stored at all, instead they are linked to an external file outside of the

data store much like a symbolic link links to a file outside of the current directory.

However since blocks often represent only part of the file the offset is also stored as

80

81

part of the link. These links are stored in the same database that small blocks are

stored in. Since the external file can easily be changed by the user, the SHA-1 hashes

will be recomputed when the file modification data changes. If the SHA-1 hash of the

block differs all the links to the file will be thrown out and the file will be relinked.

(This part is not implemented yet).

Most of the code for the data keys can be found in data_key.cpp

B.2 Determining the amount of space used

When determining the amount of space used only large blocks are considered. That is,

only blocks which are stored as actual files will be counted. This is because predicting the

amount of space a key will take to store in the database is not straightforward. It is easy to

find out the current space used by a database file but it is not easy to determine what to do

to decrease the size due to the large amount of meta-data stored in a database. With large

blocks it is fairly safe to assume that the amount of space used is approximately the size of

the file and that the size of the metadata is relatively insignificant. Thus to free a certain

amount of space N, simply keep deleting files until the sum of the sizes of the deleted files

is larger than N.

Of course, the amount of size the database used is significant and the amount of data

stored in it should be limited. I am just not sure how to do that. The best solution may be

to simply limit the number of entries stored in the database.

82

B.3 Language

DistribNet is written in fairly modern C++. It uses several external libraries however it

will not use any C++ specific libraries. In particular I have no plan to use any sort of

Abstraction library for POSIX functionally. Instead, thin wrapper classes are used which

I have complete control over and will serve mainly to make the process of using POSIX

functions less tedious, rather than abstract away the details of using them.

Bibliography

[1] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, Brandon Wiley.

Protecting Free Expression Online with Freenet. IEEE Internet Computing. Volume

6, Issue 1, pages 40-49. January 2003.

[2] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of the First Work-

shop on the Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[3] Emulab. http://www.emulab.net/

[4] FastTrack. Wikipedia article. http://en.wikipedia.org/wiki/FastTrack.

[5] Michael J. Freedman and David Mazières. Sloppy Hashing and Self-Organizing Clus-

ters. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS), Berkeley, CA, February 2003.

[6] GNUNet. http://www.ovmj.org/GNUnet/

[7] The Gnutella protocol specification v 0.4. 2000. http://www9.limewire.com/

developer/gnutella_protocol_0.4.pdf.

[8] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, I. Stoica. The Im-

pact of DHT Routing Geometry on Resilience and Proximity. SIGCOMM’03, August

25-29, 2003, Karlsruhe, Germany.

83

84

[9] David R. Karger, Matthias Ruhl. Finding Nearest neighbors in Growth-restricted Met-

rics. In Proceedings of the ACM Symposium on Theory of Computing (STOC), May

19-21, 2002, Montreal, Quebec, Canada.

[10] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceed-

ings of the ACM Symposium on Theory of Computing (STOC), 2000.

[11] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable Dynamic Em-

ulation of the Buttery. In Proceedings of the PODC, 2002.

[12] Petar Maymounkov and David Maziéres. Kademlia: A Peer-to-peer Information Sys-

tem Based on the XOR Metric. In Proceedings of the 1st International Workshop on

Peer-to-Peer Systems (IPTPS), Cambridge, March 2002.

[13] Petar Maymounkov and David Maziéres. Kademlia: A Peer-to-peer Information Sys-

tem Based on the XOR Metric. Lecture Notes in Computer Science, Volume 2429.

pp. 53 - 65. P. Druschel, F. Kaashoek, A. Rowstron (Eds.)

[14] The Napster protocol specification. Last updated 2001. http://opennap.

sourceforge.net/napster.txt.

[15] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing Nearby

Copies of Replicated Objects in a Distributed Environment. In Proceedings of the

ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 1997.

[16] Sylvia Ratnasamy. A Scalable Content-Addressable Network. PhD thesis, University

of California, Berkeley, October 2002.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A Scalable Content-Addressable Network. In Proceedings of the ACM SIGCOMM

2001 Technical Conference, San Diego, CA, USA, August 2001.

85

[18] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems. In IFIP/AC International Conference

on Distributed Systems Platforms (Middleware), pages 329-350. November 2001.

[19] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, Hari Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup

Protocol for Internet Applications. IEEE/ACM Transactions on Networking (TON),

Volume 11, Issue 1, pages 17-32. February 2003.

[20] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan,

Chord: A Scalable Peer-to-peer Lookp Service for Internet Applications. In Proceed-

ings of the ACM SIGCOMM 2001, San Diego, CA, USA, Auguest 2001.

[21] B.Y. Zhao, K.D. Kubiatowicz, and A.D. Joseph. Tapestry: An Infrastructure for Fault-

Resilient Wide-Area Location and Routing. Technical Report UCB//CSD-01-1141,

University of California at Berkeley, April 2001.

